These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 18815068)

  • 1. The importance of organ geometry and boundary constraints for planning of medical interventions.
    Misra S; Macura KJ; Ramesh KT; Okamura AM
    Med Eng Phys; 2009 Mar; 31(2):195-206. PubMed ID: 18815068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation.
    Jahya A; Schouten MG; Fütterer JJ; Misra S
    Comput Methods Biomech Biomed Engin; 2014 Apr; 17(5):497-506. PubMed ID: 22769016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of multiorgan finite element-based prostate deformation model enabling registration of endorectal coil magnetic resonance imaging for radiotherapy planning.
    Hensel JM; Ménard C; Chung PW; Milosevic MF; Kirilova A; Moseley JL; Haider MA; Brock KK
    Int J Radiat Oncol Biol Phys; 2007 Aug; 68(5):1522-8. PubMed ID: 17674983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A framework for predicting three-dimensional prostate deformation in real time.
    Jahya A; Herink M; Misra S
    Int J Med Robot; 2013 Dec; 9(4):e52-60. PubMed ID: 23495193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation and experiment of soft-tissue deformation in prostate brachytherapy.
    Liang D; Jiang S; Yang Z; Wang X
    Proc Inst Mech Eng H; 2016 Jun; 230(6):532-44. PubMed ID: 27129384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element simulation of interactions between pelvic organs: predictive model of the prostate motion in the context of radiotherapy.
    Boubaker MB; Haboussi M; Ganghoffer JF; Aletti P
    J Biomech; 2009 Aug; 42(12):1862-8. PubMed ID: 19559437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting target displacements using ultrasound elastography and finite element modeling.
    op den Buijs J; Hansen HH; Lopata RG; de Korte CL; Misra S
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3143-55. PubMed ID: 21846601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy.
    van de Ven WJ; Hu Y; Barentsz JO; Karssemeijer N; Barratt D; Huisman HJ
    Med Phys; 2015 May; 42(5):2470-81. PubMed ID: 25979040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A material sensitivity study on the accuracy of deformable organ registration using linear biomechanical models.
    Chi Y; Liang J; Yan D
    Med Phys; 2006 Feb; 33(2):421-33. PubMed ID: 16532950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ImageParser: a tool for finite element generation from three-dimensional medical images.
    Yin HM; Sun LZ; Wang G; Yamada T; Wang J; Vannier MW
    Biomed Eng Online; 2004 Oct; 3():31. PubMed ID: 15461787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element head and neck model as a supportive tool for deformable image registration.
    Kim J; Saitou K; Matuszak MM; Balter JM
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1311-7. PubMed ID: 26704371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element based bladder modeling for image-guided radiotherapy of bladder cancer.
    Chai X; van Herk M; van de Kamer JB; Hulshof MC; Remeijer P; Lotz HT; Bel A
    Med Phys; 2011 Jan; 38(1):142-50. PubMed ID: 21361183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors influencing the accuracy of biomechanical breast models.
    Tanner C; Schnabel JA; Hill DL; Hawkes DJ; Leach MO; Hose DR
    Med Phys; 2006 Jun; 33(6):1758-69. PubMed ID: 16872083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and modelling of contacts in explicit finite-element simulation of soft tissue biomechanics.
    Johnsen SF; Taylor ZA; Han L; Hu Y; Clarkson MJ; Hawkes DJ; Ourselin S
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1873-91. PubMed ID: 25559760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations.
    Bonaretti S; Seiler C; Boichon C; Reyes M; Büchler P
    Med Eng Phys; 2014 Dec; 36(12):1626-35. PubMed ID: 25271191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-element modeling of compression and gravity on a population of breast phantoms for multimodality imaging simulation.
    Sturgeon GM; Kiarashi N; Lo JY; Samei E; Segars WP
    Med Phys; 2016 May; 43(5):2207. PubMed ID: 27147333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of new anatomy reconstruction software to localize cardiac isochrones to the cardiac surface from the 12 lead ECG.
    van Dam PM; Gordon JP; Laks MM; Boyle NG
    J Electrocardiol; 2015; 48(6):959-65. PubMed ID: 26381797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
    Shao Y; Gao Y; Wang Q; Yang X; Shen D
    Med Image Anal; 2015 Dec; 26(1):345-56. PubMed ID: 26439938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.