BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

456 related articles for article (PubMed ID: 18815101)

  • 1. Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search.
    Garvin MK; Abramoff MD; Kardon R; Russell SR; Wu X; Sonka M
    IEEE Trans Med Imaging; 2008 Oct; 27(10):1495-505. PubMed ID: 18815101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of varying constraints in optimal 3-D graph search for segmentation of macular optical coherence tomography images.
    Haeker M; Abràmoff MD; Wu X; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):244-51. PubMed ID: 18051065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of regional information in optimal 3-D graph search with application for intraretinal layer segmentation of optical coherence tomography images.
    Haeker M; Wu X; Abràmoff M; Kardon R; Sonka M
    Inf Process Med Imaging; 2007; 20():607-18. PubMed ID: 17633733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Segmentation of the surfaces of the retinal layer from OCT images.
    Haeker M; Abràmoff M; Kardon R; Sonka M
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):800-7. PubMed ID: 17354964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic intra-retinal layer segmentation in 3-D OCT images using global shape regularization.
    Rathke F; Schmidt S; Schnörr C
    Med Image Anal; 2014 Jul; 18(5):781-94. PubMed ID: 24835184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.
    Niu S; Chen Q; de Sisternes L; Rubin DL; Zhang W; Liu Q
    Comput Biol Med; 2014 Nov; 54():116-28. PubMed ID: 25240102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast retinal layer segmentation of spectral domain optical coherence tomography images.
    Zhang T; Song Z; Wang X; Zheng H; Jia F; Wu J; Li G; Hu Q
    J Biomed Opt; 2015; 20(9):096014. PubMed ID: 26385655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images.
    Garvin MK; Abràmoff MD; Wu X; Russell SR; Burns TL; Sonka M
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1436-47. PubMed ID: 19278927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula.
    Quellec G; Lee K; Dolejsi M; Garvin MK; Abràmoff MD; Sonka M
    IEEE Trans Med Imaging; 2010 Jun; 29(6):1321-30. PubMed ID: 20363675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography.
    Novosel J; Thepass G; Lemij HG; de Boer JF; Vermeer KA; van Vliet LJ
    Med Image Anal; 2015 Dec; 26(1):146-58. PubMed ID: 26401595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.
    Lee S; Lebed E; Sarunic MV; Beg MF
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.
    Kafieh R; Rabbani H; Abramoff MD; Sonka M
    Med Image Anal; 2013 Dec; 17(8):907-28. PubMed ID: 23837966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accurate multimodal 3-D vessel segmentation method based on brightness variations on OCT layers and curvelet domain fundus image analysis.
    Kafieh R; Rabbani H; Hajizadeh F; Ommani M
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2815-23. PubMed ID: 23722446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid with local binary patterns.
    Liu YY; Chen M; Ishikawa H; Wollstein G; Schuman JS; Rehg JM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 1):1-9. PubMed ID: 20879208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-retinal layer segmentation in optical coherence tomography images.
    Mishra A; Wong A; Bizheva K; Clausi DA
    Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of segmentation density on spectral domain optical coherence tomography assessment in Stargardt disease.
    Velaga SB; Nittala MG; Jenkins D; Melendez J; Ho A; Strauss RW; Scholl HP; Sadda SR
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):549-556. PubMed ID: 30613916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding.
    Liu YY; Chen M; Ishikawa H; Wollstein G; Schuman JS; Rehg JM
    Med Image Anal; 2011 Oct; 15(5):748-59. PubMed ID: 21737338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving image segmentation performance and quantitative analysis via a computer-aided grading methodology for optical coherence tomography retinal image analysis.
    Debuc DC; Salinas HM; Ranganathan S; Tátrai E; Gao W; Shen M; Wang J; Somfai GM; Puliafito CA
    J Biomed Opt; 2010; 15(4):046015. PubMed ID: 20799817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina.
    Fernández DC
    IEEE Trans Med Imaging; 2005 Aug; 24(8):929-45. PubMed ID: 16092326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of the macula by optical coherence tomography.
    Fabritius T; Makita S; Miura M; Myllylä R; Yasuno Y
    Opt Express; 2009 Aug; 17(18):15659-69. PubMed ID: 19724565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.