BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 18815242)

  • 1. Peritoneal phosphate clearance is influenced by peritoneal dialysis modality, independent of peritoneal transport characteristics.
    Badve SV; Zimmerman DL; Knoll GA; Burns KD; McCormick BB
    Clin J Am Soc Nephrol; 2008 Nov; 3(6):1711-7. PubMed ID: 18815242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peritoneal phosphate removal varies by peritoneal dialysis regimen: an underestimated parameter of phosphate control.
    Botelho C; Rodrigues A; Oliveira JC; Cabrita A
    J Nephrol; 2013; 26(1):183-90. PubMed ID: 22460184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphate clearance in peritoneal dialysis: automated PD compared with continuous ambulatory PD.
    Sawin DA; Himmele R; Diaz-Buxo JA
    Adv Perit Dial; 2012; 28():120-5. PubMed ID: 23311227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drain volume required for a target peritoneal clearance: formulae based on peritoneal transport type and body size.
    Tzamaloukas AH; Malhotra D; Murata GH
    ASAIO J; 1998; 44(6):828-34. PubMed ID: 9831093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peritoneal membrane phosphate transport status: a cornerstone in phosphate handling in peritoneal dialysis.
    Bernardo AP; Contesse SA; Bajo MA; Rodrigues A; Del Peso G; Ossorio M; Cabrita A; Selgas R
    Clin J Am Soc Nephrol; 2011 Mar; 6(3):591-7. PubMed ID: 21115631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate clearance in peritoneal dialysis.
    Debowska M; Gomez R; Pinto J; Waniewski J; Lindholm B
    Sci Rep; 2020 Oct; 10(1):17504. PubMed ID: 33060672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peritoneal urea and creatinine clearances in continuous peritoneal dialysis patients with different types of peritoneal solute transport.
    Tzamaloukas AH; Murata GH; Piraino B; Rao P; Bernardini J; Malhotra D; Oreopoulos DG
    Kidney Int; 1998 May; 53(5):1405-11. PubMed ID: 9573559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate elimination in modalities of hemodialysis and peritoneal dialysis.
    Kuhlmann MK
    Blood Purif; 2010; 29(2):137-44. PubMed ID: 20093819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher KT/V urea associated with greater protein catabolic rate and dietary protein intake in children treated with CCPD compared to CAPD. Mid-European Pediatric CPD Study Group (MPCS).
    Schaefer F; Wolf S; Klaus G; Langenbeck D; Mehls O
    Adv Perit Dial; 1994; 10():310-4. PubMed ID: 7999855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superior survival of high transporters treated with automated versus continuous ambulatory peritoneal dialysis.
    Johnson DW; Hawley CM; McDonald SP; Brown FG; Rosman JB; Wiggins KJ; Bannister KM; Badve SV
    Nephrol Dial Transplant; 2010 Jun; 25(6):1973-9. PubMed ID: 20097847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peritoneal transport status influence on atherosclerosis/inflammation in CAPD patients.
    Sezer S; Tutal E; Arat Z; Akçay A; Celik H; Ozdemir FN; Haberal M
    J Ren Nutr; 2005 Oct; 15(4):427-34. PubMed ID: 16198934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adequacy and nutrition in the absence of residual renal function in peritoneal dialysis.
    Canale R; Barone RJ; Gimenez NS; Santopietro M; Ramirez L; Palliotti A; Romero P; Amado D
    Adv Perit Dial; 2001; 17():230-4. PubMed ID: 11510282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peritoneal membrane characteristics in patients on peritoneal dialysis.
    Al-wakeel J; Al-Ghonaim M; Al-Suwaida A; Askar A; Usama S; Feraz N; Shah IH; Memon N; Qudsi A; Sulaimani F
    Saudi J Kidney Dis Transpl; 2011 Jan; 22(1):49-53. PubMed ID: 21196612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peritoneal clearance of inorganic sulfate.
    Uribarri J; Buquing J; Dimaano F; Marcus RG
    Clin Nephrol; 1995 Jul; 44(1):56-9. PubMed ID: 7554534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dialysis adequacy indices in high membrane transporters treated with short-dwell peritoneal dialysis.
    Strauss FG; Holmes DL; Dennis RL
    Adv Perit Dial; 1995; 11():110-3. PubMed ID: 8534681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time dependence of solute removal during a single exchange.
    Wang T; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Adv Perit Dial; 1997; 13():23-8. PubMed ID: 9360645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperphosphatemia in Chinese peritoneal dialysis patients with and without residual kidney function: what are the implications?
    Wang AY; Woo J; Sea MM; Law MC; Lui SF; Li PK
    Am J Kidney Dis; 2004 Apr; 43(4):712-20. PubMed ID: 15042549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of peritoneal membrane assessed before and after the start of peritoneal dialysis.
    La Milia V; Limardo M; Cavalli A; Crepaldi M; Locatelli F
    Nephrol Dial Transplant; 2009 Sep; 24(9):2894-8. PubMed ID: 19349295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peritoneal transport status correlates with morbidity but not longitudinal change of nutritional status of continuous ambulatory peritoneal dialysis patients: a 2-year prospective study.
    Szeto CC; Law MC; Wong TY; Leung CB; Li PK
    Am J Kidney Dis; 2001 Feb; 37(2):329-36. PubMed ID: 11157374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The effect of the number of peritonitis episodes on peritoneal membrane function].
    Jovanović D; Nesić V; Dimitrijević Z
    Srp Arh Celok Lek; 1999; 127(1-2):28-31. PubMed ID: 10377837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.