BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 18815261)

  • 1. The glycine transporter GlyT2 controls the dynamics of synaptic vesicle refilling in inhibitory spinal cord neurons.
    Rousseau F; Aubrey KR; Supplisson S
    J Neurosci; 2008 Sep; 28(39):9755-68. PubMed ID: 18815261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse.
    Apostolides PF; Trussell LO
    J Neurosci; 2013 Mar; 33(11):4768-81. PubMed ID: 23486948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ALX 1393 inhibits spontaneous network activity by inducing glycinergic tonic currents in the spinal ventral horn.
    Eckle VS; Antkowiak B
    Neuroscience; 2013 Dec; 253():165-71. PubMed ID: 23994185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of synaptic inhibition in glycine transporter 2 deficient mice.
    Latal AT; Kremer T; Gomeza J; Eulenburg V; Hülsmann S
    Mol Cell Neurosci; 2010 Aug; 44(4):342-52. PubMed ID: 20447457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic ablation of VIAAT in glycinergic neurons causes a severe respiratory phenotype and perinatal death.
    Rahman J; Besser S; Schnell C; Eulenburg V; Hirrlinger J; Wojcik SM; Hülsmann S
    Brain Struct Funct; 2015 Sep; 220(5):2835-49. PubMed ID: 25027639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channelrhodopsin-2 mice.
    Xie R; Manis PB
    Front Neural Circuits; 2014; 8():84. PubMed ID: 25104925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transporters GlyT2 and VIAAT cooperate to determine the vesicular glycinergic phenotype.
    Aubrey KR; Rossi FM; Ruivo R; Alboni S; Bellenchi GC; Le Goff A; Gasnier B; Supplisson S
    J Neurosci; 2007 Jun; 27(23):6273-81. PubMed ID: 17554001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycinergic synaptic currents in the deep cerebellar nuclei.
    Pedroarena CM; Kamphausen S
    Neuropharmacology; 2008 Apr; 54(5):784-95. PubMed ID: 18234240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic regulation of glycine-GABA co-transmission at spinal inhibitory synapses by neuronal glutamate transporter.
    Ishibashi H; Yamaguchi J; Nakahata Y; Nabekura J
    J Physiol; 2013 Aug; 591(16):3821-32. PubMed ID: 23690564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks.
    Gao BX; Stricker C; Ziskind-Conhaim L
    J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory synapses in the developing auditory system are glutamatergic.
    Gillespie DC; Kim G; Kandler K
    Nat Neurosci; 2005 Mar; 8(3):332-8. PubMed ID: 15746915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct roles of glycinergic and GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord.
    Hinckley C; Seebach B; Ziskind-Conhaim L
    Neuroscience; 2005; 131(3):745-58. PubMed ID: 15730878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarke's column neurons as the focus of a corticospinal corollary circuit.
    Hantman AW; Jessell TM
    Nat Neurosci; 2010 Oct; 13(10):1233-9. PubMed ID: 20835249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential contribution of GABAergic and glycinergic components to inhibitory synaptic transmission in lamina II and laminae III-IV of the young rat spinal cord.
    Inquimbert P; Rodeau JL; Schlichter R
    Eur J Neurosci; 2007 Nov; 26(10):2940-9. PubMed ID: 18001289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corelease of GABA/glycine in lamina-X of the spinal cord of neonatal rats.
    Seddik R; Schlichter R; Trouslard J
    Neuroreport; 2007 Jul; 18(10):1025-9. PubMed ID: 17558289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation-Dependent Rapid Postsynaptic Clustering of Glycine Receptors in Mature Spinal Cord Neurons.
    Nakahata Y; Eto K; Murakoshi H; Watanabe M; Kuriu T; Hirata H; Moorhouse AJ; Ishibashi H; Nabekura J
    eNeuro; 2017; 4(1):. PubMed ID: 28197549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presynaptic control of inhibitory neurotransmitter content in VIAAT containing synaptic vesicles.
    Aubrey KR
    Neurochem Int; 2016 Sep; 98():94-102. PubMed ID: 27296116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitors of GlyT1 and GlyT2 differentially modulate inhibitory transmission.
    Xu TX; Gong N; Xu TL
    Neuroreport; 2005 Aug; 16(11):1227-31. PubMed ID: 16012354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity of novel lipid glycine transporter inhibitors on synaptic signalling in the dorsal horn of the spinal cord.
    Winters BL; Rawling T; Vandenberg RJ; Christie MJ; Bhola RF; Imlach WL
    Br J Pharmacol; 2018 Jun; 175(12):2337-2347. PubMed ID: 29500820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.