BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 18815263)

  • 1. Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach.
    Forstmann BU; Jahfari S; Scholte HS; Wolfensteller U; van den Wildenberg WP; Ridderinkhof KR
    J Neurosci; 2008 Sep; 28(39):9790-6. PubMed ID: 18815263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms, temporal dynamics, and individual differences in interference control.
    Forstmann BU; van den Wildenberg WP; Ridderinkhof KR
    J Cogn Neurosci; 2008 Oct; 20(10):1854-65. PubMed ID: 18370596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E; Roelofs A; van Turennout M
    Neuropsychologia; 2009 Aug; 47(10):2089-99. PubMed ID: 19467359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and functional connectivity of inferior frontal cortex associated with response conflict.
    Kemmotsu N; Villalobos ME; Gaffrey MS; Courchesne E; Müller RA
    Brain Res Cogn Brain Res; 2005 Jul; 24(2):335-42. PubMed ID: 15993771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective tuning of the right inferior frontal gyrus during target detection.
    Hampshire A; Thompson R; Duncan J; Owen AM
    Cogn Affect Behav Neurosci; 2009 Mar; 9(1):103-12. PubMed ID: 19246331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putting the brakes on inhibitory models of frontal lobe function.
    Hampshire A
    Neuroimage; 2015 Jun; 113():340-55. PubMed ID: 25818684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic coding of events within the inferior frontal gyrus in a probabilistic selective attention task.
    Vossel S; Weidner R; Fink GR
    J Cogn Neurosci; 2011 Feb; 23(2):414-24. PubMed ID: 20146598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets.
    Cai W; Ryali S; Chen T; Li CS; Menon V
    J Neurosci; 2014 Oct; 34(44):14652-67. PubMed ID: 25355218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative correlation between right prefrontal activity during response inhibition and impulsiveness: a fMRI study.
    Asahi S; Okamoto Y; Okada G; Yamawaki S; Yokota N
    Eur Arch Psychiatry Clin Neurosci; 2004 Aug; 254(4):245-51. PubMed ID: 15309395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response inhibition is associated with white matter microstructure in children.
    Madsen KS; Baaré WF; Vestergaard M; Skimminge A; Ejersbo LR; Ramsøy TZ; Gerlach C; Akeson P; Paulson OB; Jernigan TL
    Neuropsychologia; 2010 Mar; 48(4):854-62. PubMed ID: 19909763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociable attentional and inhibitory networks of dorsal and ventral areas of the right inferior frontal cortex: a combined task-specific and coordinate-based meta-analytic fMRI study.
    Sebastian A; Jung P; Neuhoff J; Wibral M; Fox PT; Lieb K; Fries P; Eickhoff SB; Tüscher O; Mobascher A
    Brain Struct Funct; 2016 Apr; 221(3):1635-51. PubMed ID: 25637472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing Functional MRI and Diffusion Tensor Imaging Measures of Brain Function and Structure to Predict Working Memory and Processing Speed Performance among Inter-episode Bipolar Patients.
    McKenna BS; Theilmann RJ; Sutherland AN; Eyler LT
    J Int Neuropsychol Soc; 2015 May; 21(5):330-41. PubMed ID: 26037664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task context and frontal lobe activation in the Stroop task.
    Floden D; Vallesi A; Stuss DT
    J Cogn Neurosci; 2011 Apr; 23(4):867-79. PubMed ID: 20350183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity of left perisylvian white-matter tracts is associated with individual differences in math learning.
    Jolles D; Wassermann D; Chokhani R; Richardson J; Tenison C; Bammer R; Fuchs L; Supekar K; Menon V
    Brain Struct Funct; 2016 Apr; 221(3):1337-51. PubMed ID: 25604464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent.
    Simmonds DJ; Pekar JJ; Mostofsky SH
    Neuropsychologia; 2008 Jan; 46(1):224-32. PubMed ID: 17850833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductions in neural activity underlie behavioral components of repetition priming.
    Wig GS; Grafton ST; Demos KE; Kelley WM
    Nat Neurosci; 2005 Sep; 8(9):1228-33. PubMed ID: 16056222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the inferior frontal cortex in coping with distracting emotions.
    Dolcos F; Kragel P; Wang L; McCarthy G
    Neuroreport; 2006 Oct; 17(15):1591-4. PubMed ID: 17001274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms.
    Cubillo A; Halari R; Giampietro V; Taylor E; Rubia K
    Psychiatry Res; 2011 Jul; 193(1):17-27. PubMed ID: 21601434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural priming in human frontal cortex: multiple forms of learning reduce demands on the prefrontal executive system.
    Race EA; Shanker S; Wagner AD
    J Cogn Neurosci; 2009 Sep; 21(9):1766-81. PubMed ID: 18823245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.