These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 18815311)
1. Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. Bowden TA; Crispin M; Harvey DJ; Aricescu AR; Grimes JM; Jones EY; Stuart DI J Virol; 2008 Dec; 82(23):11628-36. PubMed ID: 18815311 [TBL] [Abstract][Full Text] [Related]
2. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Xu K; Rajashankar KR; Chan YP; Himanen JP; Broder CC; Nikolov DB Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9953-8. PubMed ID: 18632560 [TBL] [Abstract][Full Text] [Related]
3. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus. Bradel-Tretheway BG; Liu Q; Stone JA; McInally S; Aguilar HC J Virol; 2015 Jul; 89(14):7235-47. PubMed ID: 25948743 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3. Sawatsky B; Grolla A; Kuzenko N; Weingartl H; Czub M J Gen Virol; 2007 Feb; 88(Pt 2):582-591. PubMed ID: 17251577 [TBL] [Abstract][Full Text] [Related]
5. Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation. Priyadarsinee L; Sarma H; Sastry GN J Chem Sci (Bangalore); 2022; 134(4):114. PubMed ID: 36465097 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Bowden TA; Aricescu AR; Gilbert RJ; Grimes JM; Jones EY; Stuart DI Nat Struct Mol Biol; 2008 Jun; 15(6):567-72. PubMed ID: 18488039 [TBL] [Abstract][Full Text] [Related]
7. Mutations in the G-H loop region of ephrin-B2 can enhance Nipah virus binding and infection. Yuan J; Marsh G; Khetawat D; Broder CC; Wang LF; Shi Z J Gen Virol; 2011 Sep; 92(Pt 9):2142-2152. PubMed ID: 21632558 [TBL] [Abstract][Full Text] [Related]
9. Envelope-receptor interactions in Nipah virus pathobiology. Lee B Ann N Y Acad Sci; 2007 Apr; 1102(1):51-65. PubMed ID: 17470911 [TBL] [Abstract][Full Text] [Related]
10. Detailed Molecular Biochemistry for Novel Therapeutic Design Against Nipah and Hendra Virus: A Systematic Review. Bhattacharya S; Dhar S; Banerjee A; Ray S Curr Mol Pharmacol; 2020; 13(2):108-125. PubMed ID: 31657692 [TBL] [Abstract][Full Text] [Related]
11. Multiple Strategies Reveal a Bidentate Interaction between the Nipah Virus Attachment and Fusion Glycoproteins. Stone JA; Vemulapati BM; Bradel-Tretheway B; Aguilar HC J Virol; 2016 Dec; 90(23):10762-10773. PubMed ID: 27654290 [TBL] [Abstract][Full Text] [Related]
12. Evidence of a potential receptor-binding site on the Nipah virus G protein (NiV-G): identification of globular head residues with a role in fusion promotion and their localization on an NiV-G structural model. Guillaume V; Aslan H; Ainouze M; Guerbois M; Wild TF; Buckland R; Langedijk JP J Virol; 2006 Aug; 80(15):7546-54. PubMed ID: 16840334 [TBL] [Abstract][Full Text] [Related]
13. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines. Levroney EL; Aguilar HC; Fulcher JA; Kohatsu L; Pace KE; Pang M; Gurney KB; Baum LG; Lee B J Immunol; 2005 Jul; 175(1):413-20. PubMed ID: 15972675 [TBL] [Abstract][Full Text] [Related]
14. Single amino acid changes in the Nipah and Hendra virus attachment glycoproteins distinguish ephrinB2 from ephrinB3 usage. Negrete OA; Chu D; Aguilar HC; Lee B J Virol; 2007 Oct; 81(19):10804-14. PubMed ID: 17652392 [TBL] [Abstract][Full Text] [Related]
15. Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. Bradel-Tretheway BG; Zamora JLR; Stone JA; Liu Q; Li J; Aguilar HC J Virol; 2019 Jul; 93(13):. PubMed ID: 30971473 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the interaction between potent small molecules against the Nipah virus Glycoprotein in Malaysia and Bangladesh strains, accompanied by the human Ephrin-B2 and Ephrin-B3 receptors; a simulation approach. Ebrahimi M; Alijanianzadeh M Mol Divers; 2024 Apr; 28(2):851-874. PubMed ID: 36808582 [TBL] [Abstract][Full Text] [Related]
17. Fc-Based Recombinant Henipavirus Vaccines Elicit Broad Neutralizing Antibody Responses in Mice. Li Y; Li R; Wang M; Liu Y; Yin Y; Zai X; Song X; Chen Y; Xu J; Chen W Viruses; 2020 Apr; 12(4):. PubMed ID: 32340278 [TBL] [Abstract][Full Text] [Related]
18. Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. Bossart KN; Crameri G; Dimitrov AS; Mungall BA; Feng YR; Patch JR; Choudhary A; Wang LF; Eaton BT; Broder CC J Virol; 2005 Jun; 79(11):6690-702. PubMed ID: 15890907 [TBL] [Abstract][Full Text] [Related]
19. Timing of galectin-1 exposure differentially modulates Nipah virus entry and syncytium formation in endothelial cells. Garner OB; Yun T; Pernet O; Aguilar HC; Park A; Bowden TA; Freiberg AN; Lee B; Baum LG J Virol; 2015 Mar; 89(5):2520-9. PubMed ID: 25505064 [TBL] [Abstract][Full Text] [Related]
20. Detection of receptor-induced glycoprotein conformational changes on enveloped virions by using confocal micro-Raman spectroscopy. Lu X; Liu Q; Benavides-Montano JA; Nicola AV; Aston DE; Rasco BA; Aguilar HC J Virol; 2013 Mar; 87(6):3130-42. PubMed ID: 23283947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]