BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1482 related articles for article (PubMed ID: 18816038)

  • 1. Determining the transition-state structure for different SN2 reactions using experimental nucleophile carbon and secondary alpha-deuterium kinetic isotope effects and theory.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2008 Oct; 112(41):10264-73. PubMed ID: 18816038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new insight into using chlorine leaving group and nucleophile carbon kinetic isotope effects to determine substituent effects on the structure of SN2 transition states.
    Westaway KC; Fang YR; MacMillar S; Matsson O; Poirier RA; Islam SM
    J Phys Chem A; 2007 Aug; 111(33):8110-20. PubMed ID: 17663535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental and theoretical multiple kinetic isotope effects for an SN2 reaction. An attempt to determine transition-state structure and the ability of theoretical methods to predict experimental kinetic isotope effects.
    Fang YR; Gao Y; Ryberg P; Eriksson J; Kołodziejska-Huben M; Dybała-Defratyka A; Madhavan S; Danielsson R; Paneth P; Matsson O; Westaway KC
    Chemistry; 2003 Jun; 9(12):2696-709. PubMed ID: 12772284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of solvent on the structure of the transition state for the S(N)2 reaction between cyanide ion and ethyl chloride in DMSO and THF probed with six different kinetic isotope effects.
    Fang YR; MacMillar S; Eriksson J; Kołodziejska-Huben M; Dybała-Defratyka A; Paneth P; Matsson O; Westaway KC
    J Org Chem; 2006 Jun; 71(13):4742-7. PubMed ID: 16776498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical investigation of alpha-carbon kinetic isotope effects and their relationship to the transition-state structure of S(N)2 reactions.
    Matsson O; Dybala-Defratyka A; Rostkowski M; Paneth P; Westaway KC
    J Org Chem; 2005 May; 70(10):4022-7. PubMed ID: 15876091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition state structure of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase from Escherichia coli and its similarity to transition state analogues.
    Singh V; Lee JE; Núñez S; Howell PL; Schramm VL
    Biochemistry; 2005 Sep; 44(35):11647-59. PubMed ID: 16128565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inert salts on the structure of the transition state in the SN2 reaction between thiophenoxide ion and butyl chloride.
    Westaway KC; Gao Y; Fang YR
    J Org Chem; 2003 Apr; 68(8):3084-9. PubMed ID: 12688776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition state structure of E. coli tRNA-specific adenosine deaminase.
    Luo M; Schramm VL
    J Am Chem Soc; 2008 Feb; 130(8):2649-55. PubMed ID: 18251477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of the hydride reduction of an NAD(+) analogue by isopropyl alcohol in aqueous and acetonitrile solutions: solvent effects, deuterium isotope effects, and mechanism.
    Lu Y; Qu F; Zhao Y; Small AM; Bradshaw J; Moore B
    J Org Chem; 2009 Sep; 74(17):6503-10. PubMed ID: 19670893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C beta-lactamase.
    Adediran SA; Pratt RF
    Biochemistry; 1999 Feb; 38(5):1469-77. PubMed ID: 9931012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new interpretation of chlorine leaving group kinetic isotope effects; a theoretical approach.
    Dybała-Defratyka A; Rostkowski M; Matsson O; Westaway KC; Paneth P
    J Org Chem; 2004 Jul; 69(15):4900-5. PubMed ID: 15255714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An acyl group makes a difference in the reactivity patterns of cytochrome P450 catalyzed N-demethylation of substituted N,N-dimethylbenzamides-high spin selective reactions.
    Wang Y; Li D; Han K; Shaik S
    J Phys Chem B; 2010 Mar; 114(8):2964-70. PubMed ID: 20146528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent transitions between normal and inverse isotope effects pertaining to the interaction of H-H and C-H bonds with transition metal centers.
    Parkin G
    Acc Chem Res; 2009 Feb; 42(2):315-25. PubMed ID: 19133745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state analysis for human and Plasmodium falciparum purine nucleoside phosphorylases.
    Lewandowicz A; Schramm VL
    Biochemistry; 2004 Feb; 43(6):1458-68. PubMed ID: 14769022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy.
    Lee JK; Bain AD; Berti PJ
    J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detailed dissection of a new mechanism for glycoside cleavage: alpha-1,4-glucan lyase.
    Lee SS; Yu S; Withers SG
    Biochemistry; 2003 Nov; 42(44):13081-90. PubMed ID: 14596624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of substituent and leaving group on the gas-phase SN2 reactions of phenoxides with halomethanes: a DFT investigation.
    Li QG; Xue Y
    J Phys Chem A; 2009 Sep; 113(38):10359-66. PubMed ID: 19711938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydride reduction of NAD+ analogues by isopropyl alcohol: kinetics, deuterium isotope effects and mechanism.
    Lu Y; Qu F; Moore B; Endicott D; Kuester W
    J Org Chem; 2008 Jul; 73(13):4763-70. PubMed ID: 18543993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic evaluation of MelA α-galactosidase from Citrobacter freundii: a family 4 glycosyl hydrolase in which oxidation is rate-limiting.
    Chakladar S; Cheng L; Choi M; Liu J; Bennet AJ
    Biochemistry; 2011 May; 50(20):4298-308. PubMed ID: 21495656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleophilic participation in the transition state for human thymidine phosphorylase.
    Birck MR; Schramm VL
    J Am Chem Soc; 2004 Mar; 126(8):2447-53. PubMed ID: 14982453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 75.