BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18816096)

  • 1. Investigating the effect of increasing charge density on the hemolytic activity of synthetic antimicrobial polymers.
    Al-Badri ZM; Som A; Lyon S; Nelson CF; Nüsslein K; Tew GN
    Biomacromolecules; 2008 Oct; 9(10):2805-10. PubMed ID: 18816096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial polymers prepared by ring-opening metathesis polymerization: manipulating antimicrobial properties by organic counterion and charge density variation.
    Lienkamp K; Madkour AE; Kumar KN; Nüsslein K; Tew GN
    Chemistry; 2009 Nov; 15(43):11715-22. PubMed ID: 19798715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical structure of cationic groups in amphiphilic polymethacrylates modulates the antimicrobial and hemolytic activities.
    Palermo EF; Kuroda K
    Biomacromolecules; 2009 Jun; 10(6):1416-28. PubMed ID: 19354291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the hemolytic and antibacterial activities of amphiphilic polynorbornene derivatives.
    Ilker MF; Nüsslein K; Tew GN; Coughlin EB
    J Am Chem Soc; 2004 Dec; 126(48):15870-5. PubMed ID: 15571411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial and hemolytic activities of copolymers with cationic and hydrophobic groups: a comparison of block and random copolymers.
    Wang Y; Xu J; Zhang Y; Yan H; Liu K
    Macromol Biosci; 2011 Nov; 11(11):1499-504. PubMed ID: 21818858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides.
    Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM
    J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic polymethacrylate derivatives as antimicrobial agents.
    Kuroda K; DeGrado WF
    J Am Chem Soc; 2005 Mar; 127(12):4128-9. PubMed ID: 15783168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic mimics of antimicrobial peptides--a versatile ring-opening metathesis polymerization based platform for the synthesis of selective antibacterial and cell-penetrating polymers.
    Lienkamp K; Tew GN
    Chemistry; 2009 Nov; 15(44):11784-800. PubMed ID: 19798714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach.
    Lienkamp K; Madkour AE; Musante A; Nelson CF; Nüsslein K; Tew GN
    J Am Chem Soc; 2008 Jul; 130(30):9836-43. PubMed ID: 18593128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Doubly selective" antimicrobial polymers: how do they differentiate between bacteria?
    Lienkamp K; Kumar KN; Som A; Nüsslein K; Tew GN
    Chemistry; 2009 Nov; 15(43):11710-4. PubMed ID: 19790208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of arginine- and tryptophan-rich hexapeptides: the effects of aromatic clusters, D-amino acid substitution and cyclization.
    Wessolowski A; Bienert M; Dathe M
    J Pept Res; 2004 Oct; 64(4):159-69. PubMed ID: 15357671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane interactions of designed cationic antimicrobial peptides: the two thresholds.
    Glukhov E; Burrows LL; Deber CM
    Biopolymers; 2008 May; 89(5):360-71. PubMed ID: 18186149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, syntheses and evaluation of hemocompatible pegylated-antimicrobial polymers with well-controlled molecular structures.
    Venkataraman S; Zhang Y; Liu L; Yang YY
    Biomaterials; 2010 Mar; 31(7):1751-6. PubMed ID: 20004014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of interactions between hydrophobic residues on nonpolar faces is a key determinant in decreasing hemolysis and increasing antimicrobial activities of α-helical amphipathic peptides.
    Son M; Lee Y; Hwang H; Hyun S; Yu J
    ChemMedChem; 2013 Oct; 8(10):1638-42. PubMed ID: 23894079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides.
    Palermo EF; Kuroda K
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1605-15. PubMed ID: 20563718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.
    Colomer A; Pinazo A; Manresa MA; Vinardell MP; Mitjans M; Infante MR; Pérez L
    J Med Chem; 2011 Feb; 54(4):989-1002. PubMed ID: 21229984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1.
    Zhu WL; Lan H; Park IS; Kim JI; Jin HZ; Hahm KS; Shin SY
    Biochem Biophys Res Commun; 2006 Oct; 349(2):769-74. PubMed ID: 16945333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial and hemolytic activities of single tryptophan analogs of indolicidin.
    Subbalakshmi C; Bikshapathy E; Sitaram N; Nagaraj R
    Biochem Biophys Res Commun; 2000 Aug; 274(3):714-6. PubMed ID: 10924341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.