BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 18818122)

  • 1. Generation of the 40-Hz auditory steady-state response (ASSR) explained using convolution.
    Bohórquez J; Ozdamar O
    Clin Neurophysiol; 2008 Nov; 119(11):2598-607. PubMed ID: 18818122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P(b)(P(1)) resonance at 40 Hz: effects of high stimulus rate on auditory middle latency responses (MLRs) explored using deconvolution.
    Ozdamar O; Bohórquez J; Ray SS
    Clin Neurophysiol; 2007 Jun; 118(6):1261-73. PubMed ID: 17466579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auditory steady-state responses to 40-Hz click trains: relationship to middle latency, gamma band and beta band responses studied with deconvolution.
    Presacco A; Bohórquez J; Yavuz E; Özdamar Ö
    Clin Neurophysiol; 2010 Sep; 121(9):1540-1550. PubMed ID: 20413346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous acquisition of 80 Hz ASSRs and ABRs from quasi ASSRs for threshold estimation.
    Lachowska M; Bohórquez J; Ozdamar O
    Ear Hear; 2012; 33(5):660-71. PubMed ID: 22568993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory middle-latency response and the 40-Hz auditory steady state response.
    McNeer RR; Bohórquez J; Ozdamar O
    Anesthesiology; 2009 May; 110(5):1026-35. PubMed ID: 19352165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Objective assessment of frequency-specific hearing thresholds in babies.
    Luts H; Desloovere C; Kumar A; Vandermeersch E; Wouters J
    Int J Pediatr Otorhinolaryngol; 2004 Jul; 68(7):915-26. PubMed ID: 15183583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple auditory steady-state response thresholds to bone-conduction stimuli in young infants with normal hearing.
    Small SA; Stapells DR
    Ear Hear; 2006 Jun; 27(3):219-28. PubMed ID: 16672791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory brainstem and middle latency responses. I. Effect of response filtering and waveform identification. II. Threshold responses to a 500-HZ tone pip.
    Kavanagh KT; Harker LA; Tyler RS
    Ann Otol Rhinol Laryngol Suppl; 1984; 108():1-12. PubMed ID: 6421220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and differentiation of sensorineural hearing loss in mice using auditory steady-state responses and transient auditory brainstem responses.
    Pauli-Magnus D; Hoch G; Strenzke N; Anderson S; Jentsch TJ; Moser T
    Neuroscience; 2007 Nov; 149(3):673-84. PubMed ID: 17869440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory brainstem, middle and late latency responses to short gaps in noise at different presentation rates.
    Alhussaini K; Bohorquez J; Delgado RE; Ozdamar O
    Int J Audiol; 2018 Jun; 57(6):399-406. PubMed ID: 29378459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of brief-tone stimulus duration on the brain stem auditory steady-state response.
    Mo L; Stapells DR
    Ear Hear; 2008 Jan; 29(1):121-33. PubMed ID: 18091096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain stem and cortical mechanisms underlying the binaural masking level difference in humans: an auditory steady-state response study.
    Wong WY; Stapells DR
    Ear Hear; 2004 Feb; 25(1):57-67. PubMed ID: 14770018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of the P(b) (P(1)) component of the auditory middle latency response with contralateral masking.
    Özdamar Ö; Bohórquez J
    Clin Neurophysiol; 2008 Aug; 119(8):1870-1880. PubMed ID: 18467167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Transient Response Estimations in Predicting 40 Hz Auditory Steady-State Response Using Deconvolution Methods.
    Tan X; Fu Q; Yuan H; Ding L; Wang T
    Front Neurosci; 2017; 11():697. PubMed ID: 29311778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative study between auditory steady-state responses, auditory brain-stem responses and liminar tonal audiometry].
    Martínez Fernández A; Alañón Fernández MA; Ayala Martínez LF; Alvarez Alvarez AB; Miranda León MT; Sainz Quevedo M
    Acta Otorrinolaringol Esp; 2007; 58(7):290-5. PubMed ID: 17683695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of auditory steady-state responses and tone-burst auditory brainstem responses in normal babies.
    Rance G; Tomlin D; Rickards FW
    Ear Hear; 2006 Dec; 27(6):751-62. PubMed ID: 17086084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of electrode montage on the amplitude of wave V in the auditory brainstem response to maximum length sequence stimuli.
    Dzulkarnain AA; Wilson WJ; Bradley AP; Petoe M
    Audiol Neurootol; 2008; 13(1):7-12. PubMed ID: 17715464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory sensitivity in children using the auditory steady-state response.
    Firszt JB; Gaggl W; Runge-Samuelson CL; Burg LS; Wackym PA
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):536-40. PubMed ID: 15148173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of auditory steady-state responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss.
    Lin YH; Ho HC; Wu HP
    Auris Nasus Larynx; 2009 Apr; 36(2):140-5. PubMed ID: 18620826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.