These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 18818653)

  • 1. Reconstruction of non-classical cavity field states with snapshots of their decoherence.
    Deléglise S; Dotsenko I; Sayrin C; Bernu J; Brune M; Raimond JM; Haroche S
    Nature; 2008 Sep; 455(7212):510-4. PubMed ID: 18818653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of optical 'Schrödinger cats' from photon number states.
    Ourjoumtsev A; Jeong H; Tualle-Brouri R; Grangier P
    Nature; 2007 Aug; 448(7155):784-6. PubMed ID: 17700695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum jumps of light recording the birth and death of a photon in a cavity.
    Gleyzes S; Kuhr S; Guerlin C; Bernu J; Deléglise S; Busk Hoff U; Brune M; Raimond JM; Haroche S
    Nature; 2007 Mar; 446(7133):297-300. PubMed ID: 17361178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum information in cavity quantum electrodynamics: logical gates, entanglement engineering and 'Schrödinger-cat states'.
    Haroche S
    Philos Trans A Math Phys Eng Sci; 2003 Jul; 361(1808):1339-47. PubMed ID: 12869311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of a six-atom 'Schrödinger cat' state.
    Leibfried D; Knill E; Seidelin S; Britton J; Blakestad RB; Chiaverini J; Hume DB; Itano WM; Jost JD; Langer C; Ozeri R; Reichle R; Wineland DJ
    Nature; 2005 Dec; 438(7068):639-42. PubMed ID: 16319885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoherence of quantum superpositions through coupling to engineered reservoirs.
    Myatt CJ; King BE; Turchette QA; Sackett CA; Kielpinski D; Itano WM; Monroe C; Wineland DJ
    Nature; 2000 Jan; 403(6767):269-73. PubMed ID: 10659838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoherence of matter waves by thermal emission of radiation.
    Hackermüller L; Hornberger K; Brezger B; Zeilinger A; Arndt M
    Nature; 2004 Feb; 427(6976):711-4. PubMed ID: 14973478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture).
    Haroche S
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10159-78. PubMed ID: 24038846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progressive field-state collapse and quantum non-demolition photon counting.
    Guerlin C; Bernu J; Deléglise S; Sayrin C; Gleyzes S; Kuhr S; Brune M; Raimond JM; Haroche S
    Nature; 2007 Aug; 448(7156):889-93. PubMed ID: 17713527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparing pure photon number states of the radiation field.
    Varcoe BT; Brattke S; Weidinger M; Walther H
    Nature; 2000 Feb; 403(6771):743-6. PubMed ID: 10693797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trapping an atom with single photons.
    Pinkse PW; Fischer T; Maunz P; Rempe G
    Nature; 2000 Mar; 404(6776):365-8. PubMed ID: 10746717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-to-classical transition with single-photon-added coherent states of light.
    Zavatta A; Viciani S; Bellini M
    Science; 2004 Oct; 306(5696):660-2. PubMed ID: 15499013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deterministic generation of single photons from one atom trapped in a cavity.
    McKeever J; Boca A; Boozer AD; Miller R; Buck JR; Kuzmich A; Kimble HJ
    Science; 2004 Mar; 303(5666):1992-4. PubMed ID: 14988512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministically encoding quantum information using 100-photon Schrödinger cat states.
    Vlastakis B; Kirchmair G; Leghtas Z; Nigg SE; Frunzio L; Girvin SM; Mirrahimi M; Devoret MH; Schoelkopf RJ
    Science; 2013 Nov; 342(6158):607-10. PubMed ID: 24072821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous generation of single photons with controlled waveform in an ion-trap cavity system.
    Keller M; Lange B; Hayasaka K; Lange W; Walther H
    Nature; 2004 Oct; 431(7012):1075-8. PubMed ID: 15510142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A solid-state light-matter interface at the single-photon level.
    de Riedmatten H; Afzelius M; Staudt MU; Simon C; Gisin N
    Nature; 2008 Dec; 456(7223):773-7. PubMed ID: 19079056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.