BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18818696)

  • 1. Structural and functional coupling of Hsp90- and Sgt1-centred multi-protein complexes.
    Zhang M; Botër M; Li K; Kadota Y; Panaretou B; Prodromou C; Shirasu K; Pearl LH
    EMBO J; 2008 Oct; 27(20):2789-98. PubMed ID: 18818696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sgt1 associates with Hsp90: an initial step of assembly of the core kinetochore complex.
    Bansal PK; Abdulle R; Kitagawa K
    Mol Cell Biol; 2004 Sep; 24(18):8069-79. PubMed ID: 15340069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores.
    Willhoft O; Kerr R; Patel D; Zhang W; Al-Jassar C; Daviter T; Millson SH; Thalassinos K; Vaughan CK
    Sci Rep; 2017 Jan; 7():41626. PubMed ID: 28139700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sgt1 dimerization is required for yeast kinetochore assembly.
    Bansal PK; Nourse A; Abdulle R; Kitagawa K
    J Biol Chem; 2009 Feb; 284(6):3586-92. PubMed ID: 19073600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interaction between Sgt1p and Skp1p is regulated by HSP90 chaperones and is required for proper CBF3 assembly.
    Lingelbach LB; Kaplan KB
    Mol Cell Biol; 2004 Oct; 24(20):8938-50. PubMed ID: 15456868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones.
    Johnson JL; Zuehlke AD; Tenge VR; Langworthy JC
    Curr Genet; 2014 Nov; 60(4):265-76. PubMed ID: 24923785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sgt1 dimerization is negatively regulated by protein kinase CK2-mediated phosphorylation at Ser361.
    Bansal PK; Mishra A; High AA; Abdulle R; Kitagawa K
    J Biol Chem; 2009 Jul; 284(28):18692-8. PubMed ID: 19398558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of an Hsp90 mutation that selectively disrupts cAMP/PKA signaling in Saccharomyces cerevisiae.
    Flom GA; Langner E; Johnson JL
    Curr Genet; 2012 Jun; 58(3):149-63. PubMed ID: 22461145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity.
    Botër M; Amigues B; Peart J; Breuer C; Kadota Y; Casais C; Moore G; Kleanthous C; Ochsenbein F; Shirasu K; Guerois R
    Plant Cell; 2007 Nov; 19(11):3791-804. PubMed ID: 18032631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain.
    Lee YT; Jacob J; Michowski W; Nowotny M; Kuznicki J; Chazin WJ
    J Biol Chem; 2004 Apr; 279(16):16511-7. PubMed ID: 14761955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional analysis of SGT1-HSP90 core complex required for innate immunity in plants.
    Kadota Y; Amigues B; Ducassou L; Madaoui H; Ochsenbein F; Guerois R; Shirasu K
    EMBO Rep; 2008 Dec; 9(12):1209-15. PubMed ID: 18833289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p.
    Catlett MG; Kaplan KB
    J Biol Chem; 2006 Nov; 281(44):33739-48. PubMed ID: 16945921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization.
    Allan RK; Mok D; Ward BK; Ratajczak T
    J Biol Chem; 2006 Mar; 281(11):7161-71. PubMed ID: 16421106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Plasticity of the Hsp90 Co-chaperone System.
    Sahasrabudhe P; Rohrberg J; Biebl MM; Rutz DA; Buchner J
    Mol Cell; 2017 Sep; 67(6):947-961.e5. PubMed ID: 28890336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The HSP90 complex of plants.
    Kadota Y; Shirasu K
    Biochim Biophys Acta; 2012 Mar; 1823(3):689-97. PubMed ID: 22001401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp90-Sgt1 and Skp1 target human Mis12 complexes to ensure efficient formation of kinetochore-microtubule binding sites.
    Davies AE; Kaplan KB
    J Cell Biol; 2010 Apr; 189(2):261-74. PubMed ID: 20404110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae.
    Tesic M; Marsh JA; Cullinan SB; Gaber RF
    J Biol Chem; 2003 Aug; 278(35):32692-701. PubMed ID: 12788914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NLR sensors meet at the SGT1-HSP90 crossroad.
    Kadota Y; Shirasu K; Guerois R
    Trends Biochem Sci; 2010 Apr; 35(4):199-207. PubMed ID: 20096590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the Hsp90 co-chaperone Cpr7 from Saccharomyces cerevisiae.
    Qiu Y; Ge Q; Wang M; Lv H; Ebrahimi M; Niu L; Teng M; Li X
    J Struct Biol; 2017 Mar; 197(3):379-387. PubMed ID: 28192191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.