BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18818769)

  • 1. Organization of excitable dynamics in hierarchical biological networks.
    Müller-Linow M; Hilgetag CC; Hütt MT
    PLoS Comput Biol; 2008 Sep; 4(9):e1000190. PubMed ID: 18818769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical organization unveiled by functional connectivity in complex brain networks.
    Zhou C; Zemanová L; Zamora G; Hilgetag CC; Kurths J
    Phys Rev Lett; 2006 Dec; 97(23):238103. PubMed ID: 17280251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical study of network models for neural networks and their dynamics.
    Govan G; Xenos A; Frisco P
    J Theor Biol; 2013 Nov; 336():1-10. PubMed ID: 23871957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a theory of coactivation patterns in excitable neural networks.
    Messé A; Hütt MT; Hilgetag CC
    PLoS Comput Biol; 2018 Apr; 14(4):e1006084. PubMed ID: 29630592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological cluster analysis reveals the systemic organization of the Caenorhabditis elegans connectome.
    Sohn Y; Choi MK; Ahn YY; Lee J; Jeong J
    PLoS Comput Biol; 2011 May; 7(5):e1001139. PubMed ID: 21625578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hierarchical modular brain connectivity is a stretch for criticality.
    Hilgetag CC; Hütt MT
    Trends Cogn Sci; 2014 Mar; 18(3):114-5. PubMed ID: 24268289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular topology emerges from plasticity in a minimalistic excitable network model.
    Damicelli F; Hilgetag CC; Hütt MT; Messé A
    Chaos; 2017 Apr; 27(4):047406. PubMed ID: 28456166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal rules in brain networks: Signatures of self-organization.
    Singh SS; Haobijam D; Malik MZ; Ishrat R; Singh RKB
    J Theor Biol; 2018 Jan; 437():58-66. PubMed ID: 28935234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discriminative topological features reveal biological network mechanisms.
    Middendorf M; Ziv E; Adams C; Hom J; Koytcheff R; Levovitz C; Woods G; Chen L; Wiggins C
    BMC Bioinformatics; 2004 Nov; 5():181. PubMed ID: 15555081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling in topological properties of brain networks.
    Singh SS; Khundrakpam B; Reid AT; Lewis JD; Evans AC; Ishrat R; Sharma BI; Singh RK
    Sci Rep; 2016 Apr; 6():24926. PubMed ID: 27112129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic properties of network motifs contribute to biological network organization.
    Prill RJ; Iglesias PA; Levchenko A
    PLoS Biol; 2005 Nov; 3(11):e343. PubMed ID: 16187794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs.
    Zamora-López G; Chen Y; Deco G; Kringelbach ML; Zhou C
    Sci Rep; 2016 Dec; 6():38424. PubMed ID: 27917958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Griffiths phases and the stretching of criticality in brain networks.
    Moretti P; Muñoz MA
    Nat Commun; 2013; 4():2521. PubMed ID: 24088740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complexity versus modularity and heterogeneity in oscillatory networks: combining segregation and integration in neural systems.
    Zhao M; Zhou C; Chen Y; Hu B; Wang BH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046225. PubMed ID: 21230383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hierarchy index for networks in the brain reveals a complex entangled organizational structure.
    Pathak A; Menon SN; Sinha S
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2314291121. PubMed ID: 38923990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspective: network-guided pattern formation of neural dynamics.
    Hütt MT; Kaiser M; Hilgetag CC
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems.
    Chen Y; Wang S; Hilgetag CC; Zhou C
    PLoS Comput Biol; 2013; 9(3):e1002937. PubMed ID: 23505352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the connectivity of primate cortical networks from topological and spatial node properties.
    Costa Lda F; Kaiser M; Hilgetag CC
    BMC Syst Biol; 2007 Mar; 1():16. PubMed ID: 17408506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system.
    Pan RK; Chatterjee N; Sinha S
    PLoS One; 2010 Feb; 5(2):e9240. PubMed ID: 20179757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-worldness favours network inference in synthetic neural networks.
    García RA; Martí AC; Cabeza C; Rubido N
    Sci Rep; 2020 Feb; 10(1):2296. PubMed ID: 32042036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.