These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18818769)

  • 21. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.
    Bassett DS; Greenfield DL; Meyer-Lindenberg A; Weinberger DR; Moore SW; Bullmore ET
    PLoS Comput Biol; 2010 Apr; 6(4):e1000748. PubMed ID: 20421990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural properties of the Caenorhabditis elegans neuronal network.
    Varshney LR; Chen BL; Paniagua E; Hall DH; Chklovskii DB
    PLoS Comput Biol; 2011 Feb; 7(2):e1001066. PubMed ID: 21304930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network Events on Multiple Space and Time Scales in Cultured Neural Networks and in a Stochastic Rate Model.
    Gigante G; Deco G; Marom S; Del Giudice P
    PLoS Comput Biol; 2015 Nov; 11(11):e1004547. PubMed ID: 26558616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Networking genetic regulation and neural computation: directed network topology and its effect on the dynamics.
    Grönlund A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061908. PubMed ID: 15697403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic flux-based modularity using shortest retroactive distances.
    Sridharan GV; Yi M; Hassoun S; Lee K
    BMC Syst Biol; 2012 Dec; 6():155. PubMed ID: 23270532
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modularity Induced Gating and Delays in Neuronal Networks.
    Shein-Idelson M; Cohen G; Ben-Jacob E; Hanein Y
    PLoS Comput Biol; 2016 Apr; 12(4):e1004883. PubMed ID: 27104350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A structure-dynamic approach to cortical organization: number of paths and accessibility.
    Rodrigues FA; da Fontoura Costa L
    J Neurosci Methods; 2009 Sep; 183(1):57-62. PubMed ID: 19591866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase transition in the economically modeled growth of a cellular nervous system.
    Nicosia V; Vértes PE; Schafer WR; Latora V; Bullmore ET
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7880-5. PubMed ID: 23610428
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From Caenorhabditis elegans to the human connectome: a specific modular organization increases metabolic, functional and developmental efficiency.
    Kim JS; Kaiser M
    Philos Trans R Soc Lond B Biol Sci; 2014 Oct; 369(1653):. PubMed ID: 25180307
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Random distance dependent attachment as a model for neural network generation in the Caenorhabditis elegans.
    Itzhack R; Louzoun Y
    Bioinformatics; 2010 Mar; 26(5):647-52. PubMed ID: 20081220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cellular homeostatic intrinsic plasticity on dynamical and computational properties of biological recurrent neural networks.
    Naudé J; Cessac B; Berry H; Delord B
    J Neurosci; 2013 Sep; 33(38):15032-43. PubMed ID: 24048833
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution and development of brain networks: from Caenorhabditis elegans to Homo sapiens.
    Kaiser M; Varier S
    Network; 2011; 22(1-4):143-7. PubMed ID: 22149674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soft-wired long-term memory in a natural recurrent neuronal network.
    Casal MA; Galella S; Vilarroya O; Garcia-Ojalvo J
    Chaos; 2020 Jun; 30(6):061101. PubMed ID: 32611119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collective dynamics of 'small-world' networks.
    Watts DJ; Strogatz SH
    Nature; 1998 Jun; 393(6684):440-2. PubMed ID: 9623998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional connectomics from neural dynamics: probabilistic graphical models for neuronal network of
    Liu H; Kim J; Shlizerman E
    Philos Trans R Soc Lond B Biol Sci; 2018 Sep; 373(1758):. PubMed ID: 30201841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of robustness against lesions of cortical networks.
    Kaiser M; Martin R; Andras P; Young MP
    Eur J Neurosci; 2007 May; 25(10):3185-92. PubMed ID: 17561832
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A constrained evolutionary computation method for detecting controlling regions of cortical networks.
    Tang Y; Wang Z; Gao H; Swift S; Kurths J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1569-81. PubMed ID: 23221081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein interaction networks of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster: large-scale organization and robustness.
    Li D; Li J; Ouyang S; Wang J; Wu S; Wan P; Zhu Y; Xu X; He F
    Proteomics; 2006 Jan; 6(2):456-61. PubMed ID: 16317777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.