These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 18818810)

  • 1. Modular microfluidics for gradient generation.
    Sun K; Wang Z; Jiang X
    Lab Chip; 2008 Sep; 8(9):1536-43. PubMed ID: 18818810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation and analysis of microreactor designs for microfluidic gradient generation using a purpose built optical detection system for entire chip imaging.
    Abdulla Yusuf H; Baldock SJ; Barber RW; Fielden PR; Goddard NJ; Mohr S; Treves Brown BJ
    Lab Chip; 2009 Jul; 9(13):1882-9. PubMed ID: 19532963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of complex concentration profiles in microchannels in a logarithmically small number of steps.
    Campbell K; Groisman A
    Lab Chip; 2007 Feb; 7(2):264-72. PubMed ID: 17268630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards lab-on-a-chip approaches in real analytical domains based on microfluidic chips/electrochemical multi-walled carbon nanotube platforms.
    Crevillén AG; Pumera M; González MC; Escarpa A
    Lab Chip; 2009 Jan; 9(2):346-53. PubMed ID: 19107295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation.
    Zhu X; Yi Chu L; Chueh BH; Shen M; Hazarika B; Phadke N; Takayama S
    Analyst; 2004 Nov; 129(11):1026-31. PubMed ID: 15508030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic design of microfluidic manifolds based on a generalised Murray's law.
    Emerson DR; Cieślicki K; Gu X; Barber RW
    Lab Chip; 2006 Mar; 6(3):447-54. PubMed ID: 16511629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks.
    Jiang X; Xu Q; Dertinger SK; Stroock AD; Fu TM; Whitesides GM
    Anal Chem; 2005 Apr; 77(8):2338-47. PubMed ID: 15828766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of cell and particle trapping in microfluidic systems.
    Nilsson J; Evander M; Hammarström B; Laurell T
    Anal Chim Acta; 2009 Sep; 649(2):141-57. PubMed ID: 19699390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.
    Zhou Y; Wang Y; Mukherjee T; Lin Q
    Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vision-based automated single-cell loading and supply system.
    Uvet H; Hasegawa A; Ohara K; Takubo T; Mae Y; Arai T
    IEEE Trans Nanobioscience; 2009 Dec; 8(4):332-40. PubMed ID: 19884102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.