BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 18818816)

  • 1. Fluorescent liquid-core/air-cladding waveguides towards integrated optofluidic light sources.
    Lim JM; Kim SH; Choi JH; Yang SM
    Lab Chip; 2008 Sep; 8(9):1580-5. PubMed ID: 18818816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid waveguide-based evanescent wave sensor that uses two light sources with different wavelengths.
    Lim JM; Urbanski JP; Choi JH; Thorsen T; Yang SM
    Anal Chem; 2011 Jan; 83(2):585-90. PubMed ID: 21166447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biconcave micro-optofluidic lens with low-refractive-index liquids.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2009 Dec; 34(23):3622-4. PubMed ID: 19953140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrokinetically tunable optofluidic bi-concave lens.
    Li H; Song C; Luong TD; Nguyen NT; Wong TN
    Lab Chip; 2012 Oct; 12(19):3680-7. PubMed ID: 22777136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel.
    Tang SK; Stan CA; Whitesides GM
    Lab Chip; 2008 Mar; 8(3):395-401. PubMed ID: 18305856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk.
    Uno H; Ishigure T
    Opt Express; 2011 May; 19(11):10931-9. PubMed ID: 21643353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrays and cascades of fluorescent liquid-liquid waveguides: broadband light sources for spectroscopy in microchannels.
    Mayers BT; Vezenov DV; Vullev VI; Whitesides GM
    Anal Chem; 2005 Mar; 77(5):1310-6. PubMed ID: 15732912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density channel alignment of graded index core polymer optical waveguide and its crosstalk analysis with ray tracing method.
    Hsu HH; Ishigure T
    Opt Express; 2010 Jun; 18(13):13368-78. PubMed ID: 20588466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic particle manipulation in a liquid-core/liquid-cladding waveguide.
    Lee KS; Yoon SY; Lee KH; Kim SB; Sung HJ; Kim SS
    Opt Express; 2012 Jul; 20(16):17348-58. PubMed ID: 23038286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer optical waveguide with multiple graded-index cores for on-board interconnects fabricated using soft-lithography.
    Ishigure T; Nitta Y
    Opt Express; 2010 Jun; 18(13):14191-201. PubMed ID: 20588553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure.
    Song C; Nguyen NT; Asundi AK; Low CL
    Opt Lett; 2011 May; 36(10):1767-9. PubMed ID: 21593884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic microchannels in aerogel.
    Xiao L; Birks TA
    Opt Lett; 2011 Aug; 36(16):3275-7. PubMed ID: 21847232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling and optimization of micro optofluidic lenses.
    Song C; Nguyen NT; Tan SH; Asundi AK
    Lab Chip; 2009 May; 9(9):1178-84. PubMed ID: 19370234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration.
    Song C; Nguyen NT; Asundi AK; Tan SH
    Opt Lett; 2010 Feb; 35(3):327-9. PubMed ID: 20125710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and inter-channel crosstalk analysis of polymer optical waveguides with W-shaped index profile for high-density optical interconnections.
    Hsu HH; Hirobe Y; Ishigure T
    Opt Express; 2011 Jul; 19(15):14018-30. PubMed ID: 21934763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and fabrication of poly(dimethylsiloxane) single-mode rib waveguide.
    Kee JS; Poenar DP; Neuzil P; Yobas L
    Opt Express; 2009 Jul; 17(14):11739-46. PubMed ID: 19582088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.