BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 18818908)

  • 21. Neural basis of aging: the penetration of cognition into action control.
    Heuninckx S; Wenderoth N; Debaere F; Peeters R; Swinnen SP
    J Neurosci; 2005 Jul; 25(29):6787-96. PubMed ID: 16033888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localization of sensorimotor cortex by using functional magnetic resonance imaging: comparison between finger tapping and palm scratching in normal volunteer.
    Kunnatiranont R; Laothamatas J; Asavaphatiboon S; Worapruckjaru L; Kumkrua C; Kampangtip A
    J Med Assoc Thai; 2002 Dec; 85(12):1264-72. PubMed ID: 12678163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional cooperativity of human cortical motor areas during self-paced simple finger movements. A high-resolution MRI study.
    Boecker H; Kleinschmidt A; Requardt M; Hänicke W; Merboldt KD; Frahm J
    Brain; 1994 Dec; 117 ( Pt 6)():1231-9. PubMed ID: 7820562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An event-related potential evoked by movement planning is modulated by performance and learning in visuomotor control.
    Hill H
    Exp Brain Res; 2009 Jun; 195(4):519-29. PubMed ID: 19415247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attention to action: specific modulation of corticocortical interactions in humans.
    Rowe J; Friston K; Frackowiak R; Passingham R
    Neuroimage; 2002 Oct; 17(2):988-98. PubMed ID: 12377172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals.
    Hund-Georgiadis M; von Cramon DY
    Exp Brain Res; 1999 Apr; 125(4):417-25. PubMed ID: 10323287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct striatal regions for planning and executing novel and automated movement sequences.
    Jankowski J; Scheef L; Hüppe C; Boecker H
    Neuroimage; 2009 Feb; 44(4):1369-79. PubMed ID: 19059350
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Motor cortex by real-time imaging process functional MRI during finger movements].
    Tan CL; Wu DX; Liu YD; Yan LR; Yuan SW; Zuo SP; He Z; Du WP; Situ WJ
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Aug; 29(4):397-400. PubMed ID: 16134588
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for premotor cortex activity during dynamic visuospatial imagery from single-trial functional magnetic resonance imaging and event-related slow cortical potentials.
    Lamm C; Windischberger C; Leodolter U; Moser E; Bauer H
    Neuroimage; 2001 Aug; 14(2):268-83. PubMed ID: 11467902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The functional role of the ventral premotor cortex in a visually paced finger tapping task: a TMS study.
    Ruspantini I; Mäki H; Korhonen R; D'Ausilio A; Ilmoniemi RJ
    Behav Brain Res; 2011 Jul; 220(2):325-30. PubMed ID: 21333693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can resting-state functional MRI serve as a complement to task-based mapping of sensorimotor function? A test-retest reliability study in healthy volunteers.
    Mannfolk P; Nilsson M; Hansson H; Ståhlberg F; Fransson P; Weibull A; Svensson J; Wirestam R; Olsrud J
    J Magn Reson Imaging; 2011 Sep; 34(3):511-7. PubMed ID: 21761469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effector-specific fields for motor preparation in the human frontal cortex.
    Connolly JD; Goodale MA; Cant JS; Munoz DP
    Neuroimage; 2007 Feb; 34(3):1209-19. PubMed ID: 17134914
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A parietal-frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency.
    Huang MX; Lee RR; Miller GA; Thoma RJ; Hanlon FM; Paulson KM; Martin K; Harrington DL; Weisend MP; Edgar JC; Canive JM
    Neuroimage; 2005 Oct; 28(1):99-114. PubMed ID: 15979344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directionality analysis on functional magnetic resonance imaging during motor task using Granger causality.
    Anwar AR; Muthalib M; Perrey S; Galka A; Granert O; Wolff S; Deuschl G; Raethjen J; Heute U; Muthuraman M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2287-90. PubMed ID: 23366380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Approaching an ecologically valid functional anatomy of spontaneous "willed" action.
    Hunter MD; Farrow TF; Papadakis NG; Wilkinson ID; Woodruff PW; Spence SA
    Neuroimage; 2003 Oct; 20(2):1264-9. PubMed ID: 14568495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the primary somatosensory cortex in an auditorily paced finger tapping task.
    Pollok B; Müller K; Aschersleben G; Schnitzler A; Prinz W
    Exp Brain Res; 2004 May; 156(1):111-7. PubMed ID: 15007587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensory-motor cortex activity modulation by hypnotic susceptibility and hypnosis during finger movement.
    Gemignani A; Tosetti M; Montanaro D; Biagi L; Ghelarducci B; Guazzelli M; Santarcangelo EL
    Arch Ital Biol; 2004 Mar; 142(2):77-85. PubMed ID: 15248563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Motor timing and motor sequencing contribute differently to the preparation for voluntary movement.
    Bortoletto M; Cunnington R
    Neuroimage; 2010 Feb; 49(4):3338-48. PubMed ID: 19945535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical representation of swallowing in normal adults: functional implications.
    Mosier K; Patel R; Liu WC; Kalnin A; Maldjian J; Baredes S
    Laryngoscope; 1999 Sep; 109(9):1417-23. PubMed ID: 10499047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.