These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 1881899)

  • 1. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae.
    Schiestl RH; Petes TD
    Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7585-9. PubMed ID: 1881899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae.
    Schiestl RH; Zhu J; Petes TD
    Mol Cell Biol; 1994 Jul; 14(7):4493-500. PubMed ID: 8007955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae.
    Zhu J; Schiestl RH
    Mol Cell Biol; 1996 Apr; 16(4):1805-12. PubMed ID: 8657156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences.
    Schiestl RH; Dominska M; Petes TD
    Mol Cell Biol; 1993 May; 13(5):2697-705. PubMed ID: 8386316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic side effects accompanying gene targeting in yeast: the influence of short heterologous termini.
    Svetec IK; Stafa A; Zgaga Z
    Yeast; 2007 Aug; 24(8):637-52. PubMed ID: 17534847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae.
    Manivasakam P; Schiestl RH
    Mol Cell Biol; 1998 Mar; 18(3):1736-45. PubMed ID: 9488490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analyses of DNA fragments integrated by illegitimate recombination in Schizosaccharomyces pombe.
    Tatebayashi K; Kato J; Ikeda H
    Mol Gen Genet; 1994 Jul; 244(2):111-9. PubMed ID: 8052229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple tandem integrations of transforming DNA sequences in yeast chromosomes suggest a mechanism for integrative transformation by homologous recombination.
    Plessis A; Dujon B
    Gene; 1993 Nov; 134(1):41-50. PubMed ID: 8244029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Illegitimate integration of single-stranded DNA in Saccharomyces cerevisiae.
    Gjuracić K; Zgaga Z
    Mol Gen Genet; 1996 Nov; 253(1-2):173-81. PubMed ID: 9003301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum.
    Chen XJ; Saliola M; Falcone C; Bianchi MM; Fukuhara H
    Nucleic Acids Res; 1986 Jun; 14(11):4471-81. PubMed ID: 3520486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene.
    Nasmyth KA; Reed SI
    Proc Natl Acad Sci U S A; 1980 Apr; 77(4):2119-23. PubMed ID: 6246523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary structure of the RAD52 gene in Saccharomyces cerevisiae.
    Adzuma K; Ogawa T; Ogawa H
    Mol Cell Biol; 1984 Dec; 4(12):2735-44. PubMed ID: 6098821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination.
    Bundock P; Hooykaas PJ
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15272-5. PubMed ID: 8986800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombination of plasmids into the Saccharomyces cerevisiae chromosome is reduced by small amounts of sequence heterogeneity.
    Smolik-Utlaut S; Petes TD
    Mol Cell Biol; 1983 Jul; 3(7):1204-11. PubMed ID: 6350848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.
    Kunes S; Botstein D; Fox MS
    Genetics; 1990 Jan; 124(1):67-80. PubMed ID: 2407606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterisation of the Saccharomyces cerevisiae glycerol-3-phosphate dehydrogenase (GUT2) promoter.
    Sleep D; Ogden JE; Roberts NA; Goodey AR
    Gene; 1991 May; 101(1):89-96. PubMed ID: 1676389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multisite integrative cassette for the yeast Saccharomyces cerevisiae.
    Kudla B; Nicolas A
    Gene; 1992 Sep; 119(1):49-56. PubMed ID: 1398090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cosmids carrying Aspergillus terreus DNA can integrate into Saccharomyces cerevisiae chromosome XII via recombination between yeast and foreign DNAs.
    Shoubochkina EA; Fodor II
    Curr Genet; 1988 Sep; 14(3):183-9. PubMed ID: 3058328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted DNA integration within different functional gene domains in yeast reveals ORF sequences as recombinational cold-spots.
    Gjuracic K; Pivetta E; Bruschi CV
    Mol Genet Genomics; 2004 May; 271(4):437-46. PubMed ID: 15048565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial telomeres are hotspots for illegitimate recombination with DNA molecules injected into the macronucleus of Paramecium primaurelia.
    Katinka MD; Bourgain FM
    EMBO J; 1992 Feb; 11(2):725-32. PubMed ID: 1311256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.