BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 18819007)

  • 21. AC electro-osmotic mixing induced by non-contact external electrodes.
    Wang SC; Chen HP; Lee CY; Yu CC; Chang HC
    Biosens Bioelectron; 2006 Oct; 22(4):563-7. PubMed ID: 16837182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure generation at the junction of two microchannels with different depths.
    Yanagisawa N; Dutta D
    Electrophoresis; 2010 Jun; 31(12):2080-8. PubMed ID: 20503204
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improving the mixing performance of side channel type micromixers using an optimal voltage control model.
    Wu CH; Yang RJ
    Biomed Microdevices; 2006 Jun; 8(2):119-31. PubMed ID: 16688571
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip.
    Gui L; Ren CL
    Anal Chem; 2006 Sep; 78(17):6215-22. PubMed ID: 16944904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters.
    Sandlin ZD; Shou M; Shackman JG; Kennedy RT
    Anal Chem; 2005 Dec; 77(23):7702-8. PubMed ID: 16316179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing.
    Yu H; Lu Y; Zhou YG; Wang FB; He FY; Xia XH
    Lab Chip; 2008 Sep; 8(9):1496-501. PubMed ID: 18818804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrokinetic particle entry into microchannels.
    Zhu J; Hu G; Xuan X
    Electrophoresis; 2012 Mar; 33(6):916-22. PubMed ID: 22528411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ion size and image effect on electrokinetic flows.
    Liu Y; Liu M; Lau WM; Yang J
    Langmuir; 2008 Mar; 24(6):2884-91. PubMed ID: 18237199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel microfluidic mixer utilizing electrokinetic driving forces under low switching frequency.
    Fu LM; Yang RJ; Lin CH; Chien YS
    Electrophoresis; 2005 May; 26(9):1814-24. PubMed ID: 15754383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel microfluidic driver via AC electrokinetics.
    Kuo CT; Liu CH
    Lab Chip; 2008 May; 8(5):725-33. PubMed ID: 18432342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Addressable electric fields for size-fractioned sample extraction in microfluidic devices.
    Lin R; Burke DT; Burns MA
    Anal Chem; 2005 Jul; 77(14):4338-47. PubMed ID: 16013844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.