BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18820022)

  • 1. Phenotypic and transcriptomic characterization of Bacillus subtilis mutants with grossly altered membrane composition.
    Salzberg LI; Helmann JD
    J Bacteriol; 2008 Dec; 190(23):7797-807. PubMed ID: 18820022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of disruption in membrane lipid biosynthetic genes on 1-butanol tolerance of Bacillus subtilis.
    Vinayavekhin N; Vangnai AS
    Appl Microbiol Biotechnol; 2018 Nov; 102(21):9279-9289. PubMed ID: 30141082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis.
    Johnson CM; Grossman AD
    J Bacteriol; 2016 Apr; 198(8):1241-9. PubMed ID: 26833415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological functions of glucolipids in Bacillus subtilis.
    Matsuoka S
    Genes Genet Syst; 2018 Apr; 92(5):217-221. PubMed ID: 28993557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and phenotypic characterization of a Bacillus subtilis strain without extracytoplasmic function σ factors.
    Luo Y; Asai K; Sadaie Y; Helmann JD
    J Bacteriol; 2010 Nov; 192(21):5736-45. PubMed ID: 20817771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity.
    López CS; Alice AF; Heras H; Rivas EA; Sánchez-Rivas C
    Microbiology (Reading); 2006 Mar; 152(Pt 3):605-616. PubMed ID: 16514141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depleting Cationic Lipids Involved in Antimicrobial Resistance Drives Adaptive Lipid Remodeling in Enterococcus faecalis.
    Rashid R; Nair ZJ; Chia DMH; Chong KKL; Cazenave Gassiot A; Morley SA; Allen DK; Chen SL; Chng SS; Wenk MR; Kline KA
    mBio; 2023 Feb; 14(1):e0307322. PubMed ID: 36629455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory overlap and functional redundancy among Bacillus subtilis extracytoplasmic function sigma factors.
    Mascher T; Hachmann AB; Helmann JD
    J Bacteriol; 2007 Oct; 189(19):6919-27. PubMed ID: 17675383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppression of abnormal morphology and extracytoplasmic function sigma activity in Bacillus subtilis ugtP mutant cells by expression of heterologous glucolipid synthases from Acholeplasma laidlawii.
    Matsuoka S; Seki T; Matsumoto K; Hara H
    Biosci Biotechnol Biochem; 2016 Dec; 80(12):2325-2333. PubMed ID: 27684739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucolipids and lipoteichoic acids affect the activity of SigI, an alternative sigma factor, and WalKR, an essential two-component system, in Bacillus subtilis.
    Matsuoka S; Shimizu Y; Nobe K; Matsumoto K; Asai K; Hara H
    Genes Cells; 2022 Feb; 27(2):77-92. PubMed ID: 34910349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic antimicrobial peptides delocalize membrane bound proteins thereby inducing a cell envelope stress response.
    Omardien S; Drijfhout JW; van Veen H; Schachtschabel S; Riool M; Hamoen LW; Brul S; Zaat SAJ
    Biochim Biophys Acta Biomembr; 2018 Nov; 1860(11):2416-2427. PubMed ID: 29894683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Bacillus subtilis sigma(M) regulon and its contribution to cell envelope stress responses.
    Eiamphungporn W; Helmann JD
    Mol Microbiol; 2008 Feb; 67(4):830-48. PubMed ID: 18179421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic characterization and complementation analysis of Bacillus subtilis 6S RNA single and double deletion mutants.
    Hoch PG; Burenina OY; Weber MH; Elkina DA; Nesterchuk MV; Sergiev PV; Hartmann RK; Kubareva EA
    Biochimie; 2015 Oct; 117():87-99. PubMed ID: 25576829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large decreases in membrane phosphatidylethanolamine and diphosphatidylglycerol upon mutation to duramycin resistance do not change the protonophore resistance of Bacillus subtilis.
    Dunkley EA; Clejan S; Guffanti AA; Krulwich TA
    Biochim Biophys Acta; 1988 Aug; 943(1):13-8. PubMed ID: 3135835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal morphology of Bacillus subtilis ugtP mutant cells lacking glucolipids.
    Matsuoka S; Chiba M; Tanimura Y; Hashimoto M; Hara H; Matsumoto K
    Genes Genet Syst; 2011; 86(5):295-304. PubMed ID: 22362028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Jan; 115(1):216-231. PubMed ID: 28941282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galactolipids from Arabidopsis thaliana can replace the function of gluco lipids in Bacillus subtilis.
    Kawakami M; Matsuoka S
    J Gen Appl Microbiol; 2022 Sep; 68(2):54-61. PubMed ID: 35370229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lipid lysyl-phosphatidylglycerol is present in membranes of Rhizobium tropici CIAT899 and confers increased resistance to polymyxin B under acidic growth conditions.
    Sohlenkamp C; Galindo-Lagunas KA; Guan Z; Vinuesa P; Robinson S; Thomas-Oates J; Raetz CR; Geiger O
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1421-30. PubMed ID: 17977153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiolipin domains in Bacillus subtilis marburg membranes.
    Kawai F; Shoda M; Harashima R; Sadaie Y; Hara H; Matsumoto K
    J Bacteriol; 2004 Mar; 186(5):1475-83. PubMed ID: 14973018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of modification of membrane lipid composition on Bacillus subtilis sporulation and spore properties.
    Griffiths KK; Setlow P
    J Appl Microbiol; 2009 Jun; 106(6):2064-78. PubMed ID: 19291241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.