BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 18820177)

  • 21. The organizer: What it meant, and still means, to developmental biology.
    Slack J
    Curr Top Dev Biol; 2024; 157():1-42. PubMed ID: 38556456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N; Wakahara M
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the Spemann organizer in anterior-posterior patterning of the trunk.
    Jansen HJ; Wacker SA; Bardine N; Durston AJ
    Mech Dev; 2007; 124(9-10):668-81. PubMed ID: 17703924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spemann's organizer and self-regulation in amphibian embryos.
    De Robertis EM
    Nat Rev Mol Cell Biol; 2006 Apr; 7(4):296-302. PubMed ID: 16482093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The homeobox gene goosecoid controls cell migration in Xenopus embryos.
    Niehrs C; Keller R; Cho KW; De Robertis EM
    Cell; 1993 Feb; 72(4):491-503. PubMed ID: 8095000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spemann-Mangold Grafts.
    Cousin H
    Cold Spring Harb Protoc; 2019 Feb; 2019(2):pdb.prot097345. PubMed ID: 29321278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle specification in the Xenopus laevis gastrula-stage embryo.
    Wunderlich K; Gustin JK; Domingo CR
    Dev Dyn; 2005 Aug; 233(4):1348-58. PubMed ID: 15965978
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm.
    Kinder SJ; Tsang TE; Wakamiya M; Sasaki H; Behringer RR; Nagy A; Tam PP
    Development; 2001 Sep; 128(18):3623-34. PubMed ID: 11566865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patterning and tissue movements in a novel explant preparation of the marginal zone of Xenopus laevis.
    Davidson LA; Keller R; DeSimone D
    Gene Expr Patterns; 2004 Jul; 4(4):457-66. PubMed ID: 15183313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos.
    Kao KR; Elinson RP
    Dev Biol; 1988 May; 127(1):64-77. PubMed ID: 3282938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Amphibian embryos as a model system for organ engineering: in vitro induction and rescue of the heart anlage.
    Grunz H
    Int J Dev Biol; 1999 Jul; 43(4):361-4. PubMed ID: 10470654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xenopus maternal RNAs from a dorsal animal blastomere induce a secondary axis in host embryos.
    Hainski AM; Moody SA
    Development; 1992 Oct; 116(2):347-55. PubMed ID: 1286612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Regression of Hensen's node and axial growth of the embryo].
    Charrier JB; Teillet MA
    J Soc Biol; 1999; 193(3):237-41. PubMed ID: 10542953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The origins of primitive blood in Xenopus: implications for axial patterning.
    Lane MC; Smith WC
    Development; 1999 Feb; 126(3):423-34. PubMed ID: 9876172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The essential character of the Spemann's organizer].
    Hashimoto C
    Tanpakushitsu Kakusan Koso; 1998 Aug; 43(10):1336-46. PubMed ID: 9742888
    [No Abstract]   [Full Text] [Related]  

  • 36. Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos.
    Oelgeschläger M; Kuroda H; Reversade B; De Robertis EM
    Dev Cell; 2003 Feb; 4(2):219-30. PubMed ID: 12586065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the dorsal lip in the induction of heart mesoderm in Xenopus laevis.
    Sater AK; Jacobson AG
    Development; 1990 Mar; 108(3):461-70. PubMed ID: 2340810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of the vertebrate embryo: Moving beyond the Spemann organizer.
    Thisse B; Thisse C
    Semin Cell Dev Biol; 2015 Jun; 42():94-102. PubMed ID: 25999320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2.
    Colleluori V; Khokha MK
    Dev Biol; 2023 Mar; 495():42-53. PubMed ID: 36572140
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of mesendoderm internalization in the Xenopus gastrula: lessons from the ventral side.
    Ibrahim H; Winklbauer R
    Dev Biol; 2001 Dec; 240(1):108-22. PubMed ID: 11784050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.