These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18820288)

  • 41. Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons.
    Stanton GB; Goldberg ME; Bruce CJ
    J Comp Neurol; 1988 May; 271(4):493-506. PubMed ID: 2454971
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dissociation of saccade-related and pursuit-related activation in human frontal eye fields as revealed by fMRI.
    Petit L; Clark VP; Ingeholm J; Haxby JV
    J Neurophysiol; 1997 Jun; 77(6):3386-90. PubMed ID: 9212283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-unit activity in the primate nucleus reticularis tegmenti pontis related to vergence and ocular accommodation.
    Gamlin PD; Clarke RJ
    J Neurophysiol; 1995 May; 73(5):2115-9. PubMed ID: 7623103
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brain stem pursuit pathways: dissociating visual, vestibular, and proprioceptive inputs during combined eye-head gaze tracking.
    Roy JE; Cullen KE
    J Neurophysiol; 2003 Jul; 90(1):271-90. PubMed ID: 12843311
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Doing without learning: stimulation of the frontal eye fields and floccular complex does not instruct motor learning in smooth pursuit eye movements.
    Heuer HW; Tokiyama S; Lisberger SG
    J Neurophysiol; 2008 Sep; 100(3):1320-31. PubMed ID: 18579657
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discharge of pursuit neurons in the caudal part of the frontal eye fields during cross-axis vestibular-pursuit training in monkeys.
    Fujiwara K; Akao T; Kurkin S; Fukushima K
    Exp Brain Res; 2009 May; 195(2):229-40. PubMed ID: 19337727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of MSTd extraretinal signals in smooth pursuit adaptation.
    Ono S; Mustari MJ
    Cereb Cortex; 2012 May; 22(5):1139-47. PubMed ID: 21768225
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Discharge characteristics of pursuit neurons in MST during vergence eye movements.
    Akao T; Mustari MJ; Fukushima J; Kurkin S; Fukushima K
    J Neurophysiol; 2005 May; 93(5):2415-34. PubMed ID: 15590724
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single-neuron activity in the dorsomedial frontal cortex during smooth-pursuit eye movements to predictable target motion.
    Heinen SJ; Liu M
    Vis Neurosci; 1997; 14(5):853-65. PubMed ID: 9364724
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of the frontal pursuit area in learning in smooth pursuit eye movements.
    Chou IH; Lisberger SG
    J Neurosci; 2004 Apr; 24(17):4124-33. PubMed ID: 15115807
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neural activity in cortical areas MST and FEF in relation to smooth pursuit gain control.
    Nuding U; Ono S; Mustari MJ; Büttner U; Glasauer S
    Prog Brain Res; 2008; 171():261-4. PubMed ID: 18718310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Learned timing of motor behavior in the smooth eye movement region of the frontal eye fields.
    Li JX; Lisberger SG
    Neuron; 2011 Jan; 69(1):159-69. PubMed ID: 21220106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functionally defined smooth and saccadic eye movement subregions in the frontal eye field of Cebus monkeys.
    Tian JR; Lynch JC
    J Neurophysiol; 1996 Oct; 76(4):2740-53. PubMed ID: 8899642
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facilitation of smooth pursuit initiation by electrical stimulation in the supplementary eye fields.
    Missal M; Heinen SJ
    J Neurophysiol; 2001 Nov; 86(5):2413-25. PubMed ID: 11698531
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes.
    Stone LS; Lisberger SG
    J Neurophysiol; 1990 May; 63(5):1241-61. PubMed ID: 2358872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neural activity in cortical area MST of alert monkey during ocular following responses.
    Kawano K; Shidara M; Watanabe Y; Yamane S
    J Neurophysiol; 1994 Jun; 71(6):2305-24. PubMed ID: 7931519
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential effects of blinks on horizontal saccade and smooth pursuit initiation in humans.
    Rambold H; El Baz I; Helmchen C
    Exp Brain Res; 2004 Jun; 156(3):314-24. PubMed ID: 14968272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The neural basis of smooth-pursuit eye movements.
    Thier P; Ilg UJ
    Curr Opin Neurobiol; 2005 Dec; 15(6):645-52. PubMed ID: 16271460
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal properties of visual motion signals for the initiation of smooth pursuit eye movements in monkeys.
    Krauzlis RJ; Lisberger SG
    J Neurophysiol; 1994 Jul; 72(1):150-62. PubMed ID: 7965001
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of the cerebellar dorsal vermis in vergence eye movements in monkeys.
    Nitta T; Akao T; Kurkin S; Fukushima K
    Cereb Cortex; 2008 May; 18(5):1042-57. PubMed ID: 17716988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.