BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 18820296)

  • 21. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases.
    Gupta R; Unciuleac MC; Shuman S; Glickman MS
    Nucleic Acids Res; 2017 Jan; 45(2):762-774. PubMed ID: 27899634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Saccharomyces cerevisiae Sae2- and Tel1-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining.
    Lee K; Lee SE
    Genetics; 2007 Aug; 176(4):2003-14. PubMed ID: 17565964
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA double-strand breaks with 5' adducts are efficiently channeled to the DNA2-mediated resection pathway.
    Tammaro M; Liao S; Beeharry N; Yan H
    Nucleic Acids Res; 2016 Jan; 44(1):221-31. PubMed ID: 26420828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Double strand break unwinding and resection by the mycobacterial helicase-nuclease AdnAB in the presence of single strand DNA-binding protein (SSB).
    Unciuleac MC; Shuman S
    J Biol Chem; 2010 Nov; 285(45):34319-29. PubMed ID: 20736178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo evidence for two active nuclease motifs in the double-strand break repair enzyme RexAB of Lactococcus lactis.
    Quiberoni A; Biswas I; El Karoui M; Rezaïki L; Tailliez P; Gruss A
    J Bacteriol; 2001 Jul; 183(13):4071-8. PubMed ID: 11395472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The motor activity of DNA2 functions as an ssDNA translocase to promote DNA end resection.
    Levikova M; Pinto C; Cejka P
    Genes Dev; 2017 Mar; 31(5):493-502. PubMed ID: 28336515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA end resection--unraveling the tail.
    Mimitou EP; Symington LS
    DNA Repair (Amst); 2011 Mar; 10(3):344-8. PubMed ID: 21227759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overexpression of OsRecQl4 and/or OsExo1 enhances DSB-induced homologous recombination in rice.
    Kwon YI; Abe K; Osakabe K; Endo M; Nishizawa-Yokoi A; Saika H; Shimada H; Toki S
    Plant Cell Physiol; 2012 Dec; 53(12):2142-52. PubMed ID: 23161853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unifying the DNA end-processing roles of the artemis nuclease: Ku-dependent artemis resection at blunt DNA ends.
    Chang HH; Watanabe G; Lieber MR
    J Biol Chem; 2015 Oct; 290(40):24036-50. PubMed ID: 26276388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembling the Human Resectosome on DNA Curtains.
    Soniat MM; Myler LR; Finkelstein IJ
    Methods Mol Biol; 2019; 1999():225-244. PubMed ID: 31127580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular architecture of the HerA-NurA DNA double-strand break resection complex.
    Byrne RT; Schuller JM; Unverdorben P; Förster F; Hopfner KP
    FEBS Lett; 2014 Dec; 588(24):4637-44. PubMed ID: 25447518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global analysis of double-strand break processing reveals in vivo properties of the helicase-nuclease complex AddAB.
    Badrinarayanan A; Le TBK; Spille JH; Cisse II; Laub MT
    PLoS Genet; 2017 May; 13(5):e1006783. PubMed ID: 28489851
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines.
    Unciuleac MC; Shuman S
    J Biol Chem; 2010 Jan; 285(4):2632-41. PubMed ID: 19920138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel nuclease activity from Xenopus laevis releases short oligomers from 5'-ends of double- and single-stranded DNA.
    Reichenberger S; Brüll N; Feldmann E; Göttlich B; Vielmetter W; Pfeiffer P
    Genes Cells; 1996 Apr; 1(4):355-67. PubMed ID: 9135080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dna2 is a structure-specific nuclease, with affinity for 5'-flap intermediates.
    Stewart JA; Campbell JL; Bambara RA
    Nucleic Acids Res; 2010 Jan; 38(3):920-30. PubMed ID: 19934252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases.
    Yeeles JT; Dillingham MS
    J Mol Biol; 2007 Aug; 371(1):66-78. PubMed ID: 17570399
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the Xenopus laevis homolog of Saccharomyces cerevisiae DNA2 and its role in DNA replication.
    Liu Q; Choe W; Campbell JL
    J Biol Chem; 2000 Jan; 275(3):1615-24. PubMed ID: 10636853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nucleases and helicases take center stage in homologous recombination.
    Mimitou EP; Symington LS
    Trends Biochem Sci; 2009 May; 34(5):264-72. PubMed ID: 19375328
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The AddAB helicase-nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain.
    Yeeles JT; Gwynn EJ; Webb MR; Dillingham MS
    Nucleic Acids Res; 2011 Mar; 39(6):2271-85. PubMed ID: 21071401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases.
    Yeeles JT; Cammack R; Dillingham MS
    J Biol Chem; 2009 Mar; 284(12):7746-55. PubMed ID: 19129187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.