BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18821271)

  • 41. Freeze-drying in novel container system: Characterization of heat and mass transfer in glass syringes.
    Patel SM; Pikal MJ
    J Pharm Sci; 2010 Jul; 99(7):3188-204. PubMed ID: 20166199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model.
    Scutellà B; Bourlès E; Plana-Fattori A; Fonseca F; Flick D; Trelea IC; Passot S
    J Pharm Sci; 2018 Aug; 107(8):2098-2106. PubMed ID: 29665380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evaluation of Different Holder Devices for Freeze-Drying in Dual-Chamber Cartridges With a Focus on Energy Transfer.
    Korpus C; Friess W
    J Pharm Sci; 2017 Apr; 106(4):1092-1101. PubMed ID: 28039019
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.
    Bosca S; Barresi AA; Fissore D
    Eur J Pharm Biopharm; 2013 Oct; 85(2):253-62. PubMed ID: 23631849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat Transfer During Freeze-Drying Using a High-throughput vial System in view of Process Scale-up to Serum vials.
    Buceta JP; Tréléa IC; Scutellà B; Bourlés E; Fonseca F; Passot S
    J Pharm Sci; 2021 Mar; 110(3):1323-1336. PubMed ID: 33275993
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Importance of Kv Distribution in Freeze Drying Part I: A Holistic Model to Predict Changes in Kv Bimodal Distribution as a Function of Pressure.
    Fontana L; Nakach M; Koumurian B; Urban C; McCoy T; Authelin JR
    J Pharm Sci; 2023 Dec; 112(12):3088-3098. PubMed ID: 37399888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat transfer in vial lyophilization.
    Brülls M; Rasmuson A
    Int J Pharm; 2002 Oct; 246(1-2):1-16. PubMed ID: 12270604
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Applications of the Tunable Diode Laser Absorption Spectroscopy: In-Process Estimation of Primary Drying Heterogeneity and Product Temperature During Lyophilization.
    Sharma P; Kessler WJ; Bogner R; Thakur M; Pikal MJ
    J Pharm Sci; 2019 Jan; 108(1):416-430. PubMed ID: 30114403
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of the secondary drying step in freeze drying using TDLAS technology.
    Schneid SC; Gieseler H; Kessler WJ; Luthra SA; Pikal MJ
    AAPS PharmSciTech; 2011 Mar; 12(1):379-87. PubMed ID: 21359604
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.
    Kuu WY; O'Bryan KR; Hardwick LM; Paul TW
    Pharm Dev Technol; 2011 Aug; 16(4):343-57. PubMed ID: 20387998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wireless sensor networks for pharmaceutical lyophilization: Quantification of local gas pressure and temperature in primary drying.
    Strongrich A; Alexeenko A
    Eur J Pharm Biopharm; 2021 Dec; 169():52-63. PubMed ID: 34547415
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative rates of freeze-drying for lactose and sucrose solutions as measured by photographic recording, product temperature, and heat flux transducer.
    Chen R; Slater NK; Gatlin LA; Kramer T; Shalaev EY
    Pharm Dev Technol; 2008; 13(5):367-74. PubMed ID: 18720233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.
    Smith G; Jeeraruangrattana Y; Ermolina I
    Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Acceleration of heat transfer in vial freeze-drying of pharmaceuticals. I: Corrugated aluminum quilt.
    Patel SD; Gupta B; Yalkowsky SH
    J Parenter Sci Technol; 1989; 43(1):8-14. PubMed ID: 2926606
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Freeze drying of L-arginine/sucrose-based protein formulations, part I: influence of formulation and arginine counter ion on the critical formulation temperature, product performance and protein stability.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Jul; 104(7):2345-58. PubMed ID: 25994980
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-Dryer Equipment Capability Limit: Comparison of Computational Modeling With Experiments at Laboratory Scale.
    Shivkumar G; Kshirsagar V; Zhu T; Sebastiao IB; Nail SL; Sacha GA; Alexeenko AA
    J Pharm Sci; 2019 Sep; 108(9):2972-2981. PubMed ID: 31004653
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of manometric temperature measurement, a process analytical technology tool for freeze-drying: part II measurement of dry-layer resistance.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):93. PubMed ID: 17285744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.