These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18821395)

  • 1. Oral bioavailability of cyclotrimethylenetrinitramine (RDX) from contaminated site soils in rats.
    Crouse LC; Michie MW; Major MA; Leach GJ; Reddy G
    Int J Toxicol; 2008; 27(4):317-22. PubMed ID: 18821395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of hydration, aging, and carbon content of soil on the evaporation and skin bioavailability of munition contaminants.
    Reifenrath WG; Kammen HO; Reddy G; Major MA; Leach GJ
    J Toxicol Environ Health A; 2008; 71(8):486-94. PubMed ID: 18338283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiologically based pharmacokinetic modeling of cyclotrimethylenetrinitramine in male rats.
    Krishnan K; Crouse LC; Bazar MA; Major MA; Reddy G
    J Appl Toxicol; 2009 Oct; 29(7):629-37. PubMed ID: 19629953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oral bioavailability of pentachlorophenol from soils of varying characteristics using a rat model.
    Pu X; Carlson G; Lee L
    J Toxicol Environ Health A; 2003 Nov; 66(21):2001-13. PubMed ID: 14555398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global gene expression in rat brain and liver after oral exposure to the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Bannon DI; Dillman JF; Hable MA; Phillips CS; Perkins EJ
    Chem Res Toxicol; 2009 Apr; 22(4):620-5. PubMed ID: 19239275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytotoxicity to and uptake of RDX by rice.
    Vila M; Mehier S; Lorber-Pascal S; Laurent F
    Environ Pollut; 2007 Feb; 145(3):813-7. PubMed ID: 16815613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subchronic lead feeding study in male rats and micropigs.
    Smith DM; Mielke HW; Heneghan JB
    Environ Toxicol; 2009 Oct; 24(5):453-61. PubMed ID: 18937295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption of (14)C-Cyclotrimethylenetrinitramine (RDX) from Soils through Excised Human Skin.
    Reddy G; Allen NA; Major MA
    Toxicol Mech Methods; 2008 Jan; 18(7):575-9. PubMed ID: 20020856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of bioremediation methods for the treatment of soil contaminated with explosives in Louisiana Army Ammunition Plant, Minden, Louisiana.
    Clark B; Boopathy R
    J Hazard Mater; 2007 May; 143(3):643-8. PubMed ID: 17289260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Up-and-down procedure (UDP) determinations of acute oral toxicity of nitroso degradation products of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX).
    Meyer SA; Marchand AJ; Hight JL; Roberts GH; Escalon LB; Inouye LS; MacMillan DK
    J Appl Toxicol; 2005; 25(5):427-34. PubMed ID: 16092083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey.
    Roberts SM; Munson JW; Lowney YW; Ruby MV
    Toxicol Sci; 2007 Jan; 95(1):281-8. PubMed ID: 17005634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of soil interstitial water in the accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in the earthworm Eisenia andrei.
    Savard K; Sarrazin M; Dodard SG; Monteil-Rivera F; Kuperman RG; Hawari J; Sunahara GI
    Environ Toxicol Chem; 2010 Apr; 29(4):998-1005. PubMed ID: 20821531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the bioavailability of explosive metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), in soils using passive sampling devices.
    Zhang B; Smith PN; Anderson TA
    J Chromatogr A; 2006 Jan; 1101(1-2):38-45. PubMed ID: 16246354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of a rat model versus a physiologically based extraction test for assessing phenanthrene bioavailability from soils.
    Pu X; Lee LS; Galinsky RE; Carlson GP
    Toxicol Sci; 2004 May; 79(1):10-7. PubMed ID: 14976340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subchronic lead feeding study in male rats.
    Smith DM; Mielke HW; Heneghan JB
    Arch Environ Contam Toxicol; 2008 Oct; 55(3):518-28. PubMed ID: 18274821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability and bioaccessibility of arsenic in a soil amended with drinking-water treatment residuals.
    Nagar R; Sarkar D; Makris KC; Datta R; Sylvia VL
    Arch Environ Contam Toxicol; 2009 Nov; 57(4):755-66. PubMed ID: 19347240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remediation of RDX- and HMX-contaminated groundwater using organic mulch permeable reactive barriers.
    Ahmad F; Schnitker SP; Newell CJ
    J Contam Hydrol; 2007 Feb; 90(1-2):1-20. PubMed ID: 17067719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating lead bioavailability data by means of a physiologically based lead kinetic model.
    Polák J; O'Flaherty EJ; Freeman GB; Johnson JD; Liao SC; Bergstrom PD
    Fundam Appl Toxicol; 1996 Jan; 29(1):63-70. PubMed ID: 8838640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX.
    Atikovic E; Suidan MT; Maloney SW
    Chemosphere; 2008 Aug; 72(11):1643-8. PubMed ID: 18586300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.