These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18821395)
21. Contaminated soils (I): In vitro dermal absorption of benzo[a]pyrene in human skin. Moody RP; Joncas J; Richardson M; Chu I J Toxicol Environ Health A; 2007 Nov; 70(21):1858-65. PubMed ID: 17934958 [TBL] [Abstract][Full Text] [Related]
22. Effective elution of RDX and TNT from particles of Comp B in surface soil. Furey JS; Fredrickson HL; Richmond MJ; Michel M Chemosphere; 2008 Jan; 70(7):1175-81. PubMed ID: 17910970 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of a peat moss plus soybean oil (PMSO) technology for reducing explosive residue transport to groundwater at military training ranges under field conditions. Fuller ME; Schaefer CE; Steffan RJ Chemosphere; 2009 Nov; 77(8):1076-83. PubMed ID: 19765798 [TBL] [Abstract][Full Text] [Related]
24. Bioavailability of 2,3',4,4',5-pentachlorobiphenyl (PCB118) and 2,2',5,5'-tetrachlorobiphenyl (PCB52) from soils using a rat model and a physiologically based extraction test. Pu X; Lee LS; Galinsky RE; Carlson GP Toxicology; 2006 Jan; 217(1):14-21. PubMed ID: 16171920 [TBL] [Abstract][Full Text] [Related]
25. Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. Lamichhane KM; Babcock RW; Turnbull SJ; Schenck S J Hazard Mater; 2012 Dec; 243():334-9. PubMed ID: 23164624 [TBL] [Abstract][Full Text] [Related]
26. Biotic and abiotic degradation of CL-20 and RDX in soils. Crocker FH; Thompson KT; Szecsody JE; Fredrickson HL J Environ Qual; 2005; 34(6):2208-16. PubMed ID: 16275722 [TBL] [Abstract][Full Text] [Related]
27. Fate of RDX and TNT in agronomic plants. Vila M; Lorber-Pascal S; Laurent F Environ Pollut; 2007 Jul; 148(1):148-54. PubMed ID: 17254682 [TBL] [Abstract][Full Text] [Related]
28. Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. Dontsova KM; Yost SL; Simunek J; Pennington JC; Williford CW J Environ Qual; 2006; 35(6):2043-54. PubMed ID: 17071873 [TBL] [Abstract][Full Text] [Related]
29. Bacterial community dynamics in high and low bioavailability soils following laboratory exposure to a range of hexahydro-1,3,5-trinitro-1,3,5-triazine concentrations. Anderson JA; CaƱas JE; Long MK; Zak JC; Cox SB Environ Toxicol Chem; 2010 Jan; 29(1):38-44. PubMed ID: 20821417 [TBL] [Abstract][Full Text] [Related]
30. Influence of mercury speciation and fractionation on bioaccessibility in soils. Zagury GJ; Bedeaux C; Welfringer B Arch Environ Contam Toxicol; 2009 Apr; 56(3):371-9. PubMed ID: 18704252 [TBL] [Abstract][Full Text] [Related]
31. Bioavailability of arsenic in soil: pilot study results and design considerations. Stanek EJ; Calabrese EJ; Barnes RM; Danku JM; Zhou Y; Kostecki PT; Zillioux E Hum Exp Toxicol; 2010 Nov; 29(11):945-60. PubMed ID: 20237175 [TBL] [Abstract][Full Text] [Related]
32. Toxicologic and histopathologic response of the terrestrial salamander Plethodon cinereus to soil exposures of 1,3,5-trinitrohexahydro-1,3,5-triazine. Johnson MS; Paulus HI; Salice CJ; Checkai RT; Simini M Arch Environ Contam Toxicol; 2004 Nov; 47(4):496-501. PubMed ID: 15499500 [TBL] [Abstract][Full Text] [Related]
33. An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Rylott EL; Jackson RG; Edwards J; Womack GL; Seth-Smith HM; Rathbone DA; Strand SE; Bruce NC Nat Biotechnol; 2006 Feb; 24(2):216-9. PubMed ID: 16429147 [TBL] [Abstract][Full Text] [Related]
34. Integration of toxicological and chemical tools to assess the bioavailability of metals and energetic compounds in contaminated soils. Berthelot Y; Valton E; Auroy A; Trottier B; Robidoux PY Chemosphere; 2008 Dec; 74(1):166-77. PubMed ID: 18829064 [TBL] [Abstract][Full Text] [Related]
35. Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R Chemosphere; 2008 May; 71(10):1963-9. PubMed ID: 18262220 [TBL] [Abstract][Full Text] [Related]
36. Effects of soil on percutaneous absorption of toluene in male rats. Skowronski GA; Turkall RM; Abdel-Rahman MS J Toxicol Environ Health; 1989; 26(3):373-84. PubMed ID: 2926835 [TBL] [Abstract][Full Text] [Related]
37. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction. Girouard E; Zagury GJ Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134 [TBL] [Abstract][Full Text] [Related]
38. Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida). Zhang B; Pan X; Cobb GP; Anderson TA Chemosphere; 2009 Jun; 76(1):76-82. PubMed ID: 19278715 [TBL] [Abstract][Full Text] [Related]
39. Measurement of arsenic bioavailability in soil using a primate model. Roberts SM; Weimar WR; Vinson JR; Munson JW; Bergeron RJ Toxicol Sci; 2002 Jun; 67(2):303-10. PubMed ID: 12011490 [TBL] [Abstract][Full Text] [Related]
40. Pilot-scale treatment of RDX-contaminated soil with zerovalent iron. Comfort SD; Shea PJ; Machacek TA; Satapanajaru T J Environ Qual; 2003; 32(5):1717-25. PubMed ID: 14535313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]