These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 18821395)
41. Bioavailability of soil-adsorbed cadmium in orally exposed male rats. Schilderman PA; Moonen EJ; Kempkers P; Kleinjans JC Environ Health Perspect; 1997 Feb; 105(2):234-8. PubMed ID: 9105799 [TBL] [Abstract][Full Text] [Related]
42. Soil adsorption alters bioavailability of benzene in dermally exposed male rats. Skowronski GA; Turkall RM; Abdel-Rahman MS Am Ind Hyg Assoc J; 1988 Oct; 49(10):506-11. PubMed ID: 3189159 [TBL] [Abstract][Full Text] [Related]
43. Spectrophotometric determination of cyclotrimethylenetrinitramine (RDX) in explosive mixtures and residues with the Berthelot reaction. Uzer A; Erçağ E; Apak R Anal Chim Acta; 2008 Mar; 612(1):53-64. PubMed ID: 18331858 [TBL] [Abstract][Full Text] [Related]
44. A Conceptual Model of Fate and Transport Processes for RDX Deposited to Surface Soils of North American Active Demolition Sites. Lapointe MC; Martel R; Diaz E J Environ Qual; 2017 Nov; 46(6):1444-1454. PubMed ID: 29293864 [TBL] [Abstract][Full Text] [Related]
45. Toxicity and uptake of cyclic nitramine explosives in ryegrass Lolium perenne. Rocheleau S; Lachance B; Kuperman RG; Hawari J; Thiboutot S; Ampleman G; Sunahara GI Environ Pollut; 2008 Nov; 156(1):199-206. PubMed ID: 18358578 [TBL] [Abstract][Full Text] [Related]
46. Comparative chlorpyrifos pharmacokinetics via multiple routes of exposure and vehicles of administration in the adult rat. Smith JN; Campbell JA; Busby-Hjerpe AL; Lee S; Poet TS; Barr DB; Timchalk C Toxicology; 2009 Jun; 261(1-2):47-58. PubMed ID: 19397948 [TBL] [Abstract][Full Text] [Related]
47. Multiple stressors in multiple species: Effects of different RDX soil concentrations and differential water-resourcing on RDX fate, plant health, and plant survival. Lance RF; Butler AD; Jung CM; Lindsay DL PLoS One; 2020; 15(8):e0234166. PubMed ID: 32797098 [TBL] [Abstract][Full Text] [Related]
48. Effect of experimental contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial communities. Juck D; Driscoll BT; Charles TC; Greer CW FEMS Microbiol Ecol; 2003 Mar; 43(2):255-62. PubMed ID: 19719686 [TBL] [Abstract][Full Text] [Related]
49. Comparative absorption of lead from contaminated soil and lead salts by weanling Fischer 344 rats. Freeman GB; Dill JA; Johnson JD; Kurtz PJ; Parham F; Matthews HB Fundam Appl Toxicol; 1996 Sep; 33(1):109-19. PubMed ID: 8812247 [TBL] [Abstract][Full Text] [Related]
50. Effect of two major N-nitroso hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolites on earthworm reproductive success. Zhang B; Cox SB; McMurry ST; Jackson WA; Cobb GP; Anderson TA Environ Pollut; 2008 Jun; 153(3):658-67. PubMed ID: 17945405 [TBL] [Abstract][Full Text] [Related]
51. Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. Lind OC; Salbu B; Skipperud L; Janssens K; Jaroszewicz J; De Nolf W J Environ Radioact; 2009 Apr; 100(4):301-7. PubMed ID: 19216013 [TBL] [Abstract][Full Text] [Related]
52. Age dependent acute oral toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and two anaerobic N-nitroso metabolites in deer mice (Peromyscus maniculatus). Smith JN; Liu J; Espino MA; Cobb GP Chemosphere; 2007 May; 67(11):2267-73. PubMed ID: 17275885 [TBL] [Abstract][Full Text] [Related]
53. A comparative study of the kinetics and bioavailability of pure and soil-adsorbed naphthalene in dermally exposed male rats. Turkall RM; Skowronski GA; Kadry AM; Abdel-Rahman MS Arch Environ Contam Toxicol; 1994 May; 26(4):504-9. PubMed ID: 8198429 [TBL] [Abstract][Full Text] [Related]
54. Comparison between oral and dermal bioavailability of soil-adsorbed phenanthrene in female rats. Kadry AM; Skowronski GA; Turkall RM; Abdel-Rahman MS Toxicol Lett; 1995 Jul; 78(2):153-63. PubMed ID: 7618180 [TBL] [Abstract][Full Text] [Related]
55. Effect of glycosidation of isoflavones on their bioavailability and pharmacokinetics in aged male rats. Sepehr E; Cooke GM; Robertson P; Gilani GS Mol Nutr Food Res; 2009 May; 53 Suppl 1():S16-26. PubMed ID: 19437481 [TBL] [Abstract][Full Text] [Related]
56. Assessment of soil quality using bioaccessibility-based models and a biomarker index. Berthelot Y; Trottier B; Robidoux PY Environ Int; 2009 Jan; 35(1):83-90. PubMed ID: 18819714 [TBL] [Abstract][Full Text] [Related]
57. Measurement of arsenic relative bioavailability in swine. Brattin W; Casteel S J Toxicol Environ Health A; 2013; 76(7):449-57. PubMed ID: 23611183 [TBL] [Abstract][Full Text] [Related]
58. Analysis and mechanisms of cyclotrimethylenetrinitramine ion formation in desorption electrospray ionization. Szakal C; Brewer TM Anal Chem; 2009 Jul; 81(13):5257-66. PubMed ID: 19514715 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of methods for assessing the oral bioavailability of inorganic mercury in soil. Schoof RA; Nielsen JB Risk Anal; 1997 Oct; 17(5):545-55. PubMed ID: 9404045 [TBL] [Abstract][Full Text] [Related]
60. Lymphatic transport of Methylnortestosterone undecanoate (MU) and the bioavailability of methylnortestosterone are highly sensitive to the mass of coadministered lipid after oral administration of MU. White KL; Nguyen G; Charman WN; Edwards GA; Faassen WA; Porter CJ J Pharmacol Exp Ther; 2009 Nov; 331(2):700-9. PubMed ID: 19696095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]