These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 18821557)

  • 1. Microfluidic lithography to create dynamic gradient SAM surfaces for spatio-temporal control of directed cell migration.
    Lamb BM; Westcott NP; Yousaf MN
    Chembiochem; 2008 Nov; 9(16):2628-32. PubMed ID: 18821557
    [No Abstract]   [Full Text] [Related]  

  • 2. Microfluidic lithography of SAMs on gold to create dynamic surfaces for directed cell migration and contiguous cell cocultures.
    Lamb BM; Barrett DG; Westcott NP; Yousaf MN
    Langmuir; 2008 Aug; 24(16):8885-9. PubMed ID: 18627184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic permeation printing of self-assembled monolayer gradients on surfaces for chemoselective ligand immobilization applied to cell adhesion and polarization.
    Lamb BM; Park S; Yousaf MN
    Langmuir; 2010 Aug; 26(15):12817-23. PubMed ID: 20586451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic microfluidic and electrochemical strategy to activate and pattern surfaces selectively with ligands and cells.
    Westcott NP; Yousaf MN
    Langmuir; 2008 Mar; 24(6):2261-5. PubMed ID: 18278968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live-cell fluorescence microscopy of directed cell migration on partially etched electroactive SAM gold surfaces.
    Lamb BM; Westcott NP; Yousaf MN
    Chembiochem; 2008 Sep; 9(14):2220-4. PubMed ID: 18752220
    [No Abstract]   [Full Text] [Related]  

  • 6. Electrochemical and chemical microfluidic gold etching to generate patterned and gradient substrates for cell adhesion and cell migration.
    Westcott NP; Lamb BM; Yousaf MN
    Anal Chem; 2009 May; 81(9):3297-303. PubMed ID: 19354293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned hybrid nanohole array surfaces for cell adhesion and migration.
    Westcott NP; Lou Y; Muth JF; Yousaf MN
    Langmuir; 2009 Oct; 25(19):11236-8. PubMed ID: 19722551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expedient generation of patterned surface aldehydes by microfluidic oxidation for chemoselective immobilization of ligands and cells.
    Westcott NP; Pulsipher A; Lamb BM; Yousaf MN
    Langmuir; 2008 Sep; 24(17):9237-40. PubMed ID: 18672921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tandem surface microfluidic lithography and activation to generate patch pattern biospecific ligand and cell arrays.
    Pulsipher A; Yousaf MN
    Langmuir; 2010 Mar; 26(6):4130-5. PubMed ID: 19839568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscale control of stiffness in a cell-adhesive substrate using microfluidics-based lithography.
    Cheung YK; Azeloglu EU; Shiovitz DA; Costa KD; Seliktar D; Sia SK
    Angew Chem Int Ed Engl; 2009; 48(39):7188-92. PubMed ID: 19479917
    [No Abstract]   [Full Text] [Related]  

  • 12. Combining microscience and neurobiology.
    Weibel DB; Garstecki P; Whitesides GM
    Curr Opin Neurobiol; 2005 Oct; 15(5):560-7. PubMed ID: 16150585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic etching and oxime-based tailoring of biodegradable polyketoesters.
    Barrett DG; Lamb BM; Yousaf MN
    Langmuir; 2008 Sep; 24(17):9861-7. PubMed ID: 18646882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of microfluidic droplets by electrorheological fluid.
    Zhang M; Gong X; Wen W
    Electrophoresis; 2009 Sep; 30(18):3116-23. PubMed ID: 19722203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions.
    Plouffe BD; Radisic M; Murthy SK
    Lab Chip; 2008 Mar; 8(3):462-72. PubMed ID: 18305866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing patterned substrates to regulate the movement of capsules in microchannels.
    Usta OB; Nayhouse M; Alexeev A; Balazs AC
    J Chem Phys; 2008 Jun; 128(23):235102. PubMed ID: 18570531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A photo-electroactive surface strategy for immobilizing ligands in patterns and gradients for studies of cell polarization.
    Chan EW; Yousaf MN
    Mol Biosyst; 2008 Jul; 4(7):746-53. PubMed ID: 18563249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue morphing control on dynamic gradient surfaces.
    Luo W; Yousaf MN
    J Am Chem Soc; 2011 Jul; 133(28):10780-3. PubMed ID: 21707041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cell migration device that maintains a defined surface with no cellular damage during wound edge generation.
    Doran MR; Mills RJ; Parker AJ; Landman KA; Cooper-White JJ
    Lab Chip; 2009 Aug; 9(16):2364-9. PubMed ID: 19636468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-bound protein gradients for cell culture fabricated by microfluidic networks and microcontact printing.
    von Philipsborn AC; Lang S; Jiang Z; Bonhoeffer F; Bastmeyer M
    Sci STKE; 2007 Nov; 2007(414):pl6. PubMed ID: 18042942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.