BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 18821773)

  • 1. A stabilizing alpha/beta-hydrophobic core greatly contributes to hyperthermostability of archaeal [P62A]Ssh10b.
    Fang X; Cui Q; Tong Y; Feng Y; Shan L; Huang L; Wang J
    Biochemistry; 2008 Oct; 47(43):11212-21. PubMed ID: 18821773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Favorable contribution of the C-terminal residue K97 to the stability of a hyperthermophilic archaeal [P62A]Ssh10b.
    Fang X; Feng Y; Wang J
    Arch Biochem Biophys; 2009 Jan; 481(1):52-8. PubMed ID: 18851941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Ssh10b2 differs from its paralogue Ssh10b in cellular abundance and the ability to constrain DNA supercoils].
    Guo R; Xue H; Huo XF; Xu DY; Hu JC
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):323-7. PubMed ID: 16736601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based stability analysis of an extremely stable dimeric DNA binding protein from Sulfolobus islandicus.
    Weininger U; Zeeb M; Neumann P; Löw C; Stubbs MT; Lipps G; Balbach J
    Biochemistry; 2009 Oct; 48(42):10030-7. PubMed ID: 19788170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR solution structure of the archaebacterial chromosomal protein MC1 reveals a new protein fold.
    Paquet F; Culard F; Barbault F; Maurizot JC; Lancelot G
    Biochemistry; 2004 Nov; 43(47):14971-8. PubMed ID: 15554704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An abundant DNA binding protein from the hyperthermophilic archaeon Sulfolobus shibatae affects DNA supercoiling in a temperature-dependent fashion.
    Xue H; Guo R; Wen Y; Liu D; Huang L
    J Bacteriol; 2000 Jul; 182(14):3929-33. PubMed ID: 10869069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression and purification of DNA-binding protein Mvo10b from Methanococcus voltae.
    Xuan J; Yao H; Feng Y; Wang J
    Protein Expr Purif; 2009 Apr; 64(2):162-6. PubMed ID: 19041399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and structural insights into RNA binding by Ssh10b, a member of the highly conserved Sac10b protein family in Archaea.
    Guo L; Ding J; Guo R; Hou Y; Wang DC; Huang L
    J Biol Chem; 2014 Jan; 289(3):1478-90. PubMed ID: 24307170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the influence of hyperthermophilic protein Ssh10b on the stability and conformation of RNA by molecular dynamics simulation.
    Zhang X; Zheng QC
    Biopolymers; 2018 Jan; 109(1):. PubMed ID: 29068057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure, stability, and nucleic acid binding of the hyperthermophile protein Sso10b2.
    Biyani K; Kahsai MA; Clark AT; Armstrong TL; Edmondson SP; Shriver JW
    Biochemistry; 2005 Nov; 44(43):14217-30. PubMed ID: 16245938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refolding of the hyperthermophilic protein Ssh10b involves a kinetic dimeric intermediate.
    Ge M; Mao YJ; Pan XM
    Extremophiles; 2009 Jan; 13(1):131-7. PubMed ID: 19002648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal unfolding of the archaeal DNA and RNA binding protein Ssh10.
    Wu X; Oppermann M; Berndt KD; Bergman T; Jörnvall H; Knapp S; Oppermann U
    Biochem Biophys Res Commun; 2008 Sep; 373(4):482-7. PubMed ID: 18571501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two conformations of archaeal Ssh10b. The origin of its temperature-dependent interaction with DNA.
    Cui Q; Tong Y; Xue H; Huang L; Feng Y; Wang J
    J Biol Chem; 2003 Dec; 278(51):51015-22. PubMed ID: 14523014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of the hyperthermophile chromosomal protein Sso7d bound to DNA.
    Gao YG; Su SY; Robinson H; Padmanabhan S; Lim L; McCrary BS; Edmondson SP; Shriver JW; Wang AH
    Nat Struct Biol; 1998 Sep; 5(9):782-6. PubMed ID: 9731772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of plastic beta-hairpin and weak hydrophobic core in the stability and unfolding of a full sequence design protein.
    Lei H; Duan Y
    J Chem Phys; 2004 Dec; 121(23):12104-11. PubMed ID: 15634176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural domain design: enhanced thermal stability of a zinc-lacking ferredoxin isoform shows that a hydrophobic core efficiently replaces the structural metal site.
    Rocha R; Leal SS; Teixeira VH; Regalla M; Huber H; Baptista AM; Soares CM; Gomes CM
    Biochemistry; 2006 Aug; 45(34):10376-84. PubMed ID: 16922514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of core hydrophobicity and packing in the hyperthermophile proteins Sac7d and Sso7d.
    Clark AT; McCrary BS; Edmondson SP; Shriver JW
    Biochemistry; 2004 Mar; 43(10):2840-53. PubMed ID: 15005619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the destabilization produced by an amino-terminal tag in the beta-glycosidase from the hyperthermophilic archeon Sulfolobus solfataricus.
    Ausili A; Cobucci-Ponzano B; Di Lauro B; D'Avino R; Scirè A; Rossi M; Tanfani F; Moracci M
    Biochimie; 2006 Jul; 88(7):807-17. PubMed ID: 16494988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure extensions in Pyrococcus furiosus ferredoxin destabilize the disulfide bond relative to that in other hyperthermostable ferredoxins. Global consequences for the disulfide orientational heterogeneity.
    Wang PL; Calzolai L; Bren KL; Teng Q; Jenney FE; Brereton PS; Howard JB; Adams MW; La Mar GN
    Biochemistry; 1999 Jun; 38(25):8167-78. PubMed ID: 10387062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.