These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 18821791)

  • 21. A free energy calculation study of the effect of H-->F substitution on binding affinity in ligand-antibody interactions.
    Saito M; Okazaki I; Oda M; Fujii I
    J Comput Chem; 2005 Feb; 26(3):272-82. PubMed ID: 15614800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy.
    Levy RM; Zhang LY; Gallicchio E; Felts AK
    J Am Chem Soc; 2003 Aug; 125(31):9523-30. PubMed ID: 12889983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization?
    Michel J; Verdonk ML; Essex JW
    J Med Chem; 2006 Dec; 49(25):7427-39. PubMed ID: 17149872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydration free energies of amino acids: why side chain analog data are not enough.
    König G; Boresch S
    J Phys Chem B; 2009 Jul; 113(26):8967-74. PubMed ID: 19507836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limitations of atom-centered dielectric functions in implicit solvent models.
    Swanson JM; Mongan J; McCammon JA
    J Phys Chem B; 2005 Aug; 109(31):14769-72. PubMed ID: 16852866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coarse-grained lattice model simulations of sequence-structure fitness of a ribosome-inactivating protein.
    Olson MA; Yeh IC; Lee MS
    Biopolymers; 2008 Feb; 89(2):153-9. PubMed ID: 17985366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A test of implicit solvent models on the folding simulation of the GB1 peptide.
    Shao Q; Yang L; Gao YQ
    J Chem Phys; 2009 May; 130(19):195104. PubMed ID: 19466868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FURSMASA: a new approach to rapid scoring functions that uses a MD-averaged potential energy grid and a solvent-accessible surface area term with parameters GA fit to experimental data.
    Pearlman DA; Rao BG; Charifson P
    Proteins; 2008 May; 71(3):1519-38. PubMed ID: 18300249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AGBNP: an analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling.
    Gallicchio E; Levy RM
    J Comput Chem; 2004 Mar; 25(4):479-99. PubMed ID: 14735568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K; Hannongbua S; Feig M
    J Comput Chem; 2008 Apr; 29(5):673-85. PubMed ID: 17849388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational sidechain placement and protein mutagenesis with implicit solvent models.
    Lopes A; Alexandrov A; Bathelt C; Archontis G; Simonson T
    Proteins; 2007 Jun; 67(4):853-67. PubMed ID: 17348031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Postprocessing of docked protein-ligand complexes using implicit solvation models.
    Lindström A; Edvinsson L; Johansson A; Andersson CD; Andersson IE; Raubacher F; Linusson A
    J Chem Inf Model; 2011 Feb; 51(2):267-82. PubMed ID: 21309544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Implicit electrostatic solvent model with continuous dielectric permittivity function.
    Basilevsky MV; Grigoriev FV; Nikitina EA; Leszczynski J
    J Phys Chem B; 2010 Feb; 114(7):2457-66. PubMed ID: 20166682
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective Born radii in the generalized Born approximation: the importance of being perfect.
    Onufriev A; Case DA; Bashford D
    J Comput Chem; 2002 Nov; 23(14):1297-304. PubMed ID: 12214312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis.
    Tan C; Yang L; Luo R
    J Phys Chem B; 2006 Sep; 110(37):18680-7. PubMed ID: 16970499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extended binding site of ricin B lectin for oligosaccharide recognition.
    Ganguly D; Mukhopadhyay C
    Biopolymers; 2007 Jul; 86(4):311-20. PubMed ID: 17450571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implicit solvent simulations of DNA and DNA-protein complexes: agreement with explicit solvent vs experiment.
    Chocholousová J; Feig M
    J Phys Chem B; 2006 Aug; 110(34):17240-51. PubMed ID: 16928023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.