BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 18823093)

  • 21. Peptide-mediated intracellular delivery of quantum dots.
    Lagerholm BC
    Methods Mol Biol; 2007; 374():105-12. PubMed ID: 17237533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication and characterization of silk-fibroin-coated quantum dots.
    Nathwani BB; Jaffari M; Juriani AR; Mathur AB; Meissner KE
    IEEE Trans Nanobioscience; 2009 Mar; 8(1):72-7. PubMed ID: 19304498
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time visualization of prion transport in single live cells using quantum dots.
    Luo K; Li S; Xie M; Wu D; Wang W; Chen R; Huang L; Huang T; Pang D; Xiao G
    Biochem Biophys Res Commun; 2010 Apr; 394(3):493-7. PubMed ID: 20193663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical coding of mammalian cells using semiconductor quantum dots.
    Mattheakis LC; Dias JM; Choi YJ; Gong J; Bruchez MP; Liu J; Wang E
    Anal Biochem; 2004 Apr; 327(2):200-8. PubMed ID: 15051536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical investigation of cellular uptake of quantum dots decorated with a proline-rich cell penetrating peptide.
    Marín S; Pujals S; Giralt E; Merkoçi A
    Bioconjug Chem; 2011 Feb; 22(2):180-5. PubMed ID: 21247154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Short ligands affect modes of QD uptake and elimination in human cells.
    Al-Hajaj NA; Moquin A; Neibert KD; Soliman GM; Winnik FM; Maysinger D
    ACS Nano; 2011 Jun; 5(6):4909-18. PubMed ID: 21612298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporal multicolor labeling of individual cells using peptide-functionalized quantum dots and mixed delivery techniques.
    Delehanty JB; Bradburne CE; Susumu K; Boeneman K; Mei BC; Farrell D; Blanco-Canosa JB; Dawson PE; Mattoussi H; Medintz IL
    J Am Chem Soc; 2011 Jul; 133(27):10482-9. PubMed ID: 21627173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line.
    Clift MJ; Rothen-Rutishauser B; Brown DM; Duffin R; Donaldson K; Proudfoot L; Guy K; Stone V
    Toxicol Appl Pharmacol; 2008 Nov; 232(3):418-27. PubMed ID: 18708083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tat peptide mediated cellular uptake of SiO2 submicron particles.
    Mao Z; Wan L; Hu L; Ma L; Gao C
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):432-40. PubMed ID: 19846283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Advanced optical imaging reveals the dependence of particle geometry on interactions between CdSe quantum dots and immune cells.
    Aaron JS; Greene AC; Kotula PG; Bachand GD; Timlin JA
    Small; 2011 Feb; 7(3):334-41. PubMed ID: 21294262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots.
    Srinivasan C; Lee J; Papadimitrakopoulos F; Silbart LK; Zhao M; Burgess DJ
    Mol Ther; 2006 Aug; 14(2):192-201. PubMed ID: 16698322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A TAT-streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells.
    Albarran B; To R; Stayton PS
    Protein Eng Des Sel; 2005 Mar; 18(3):147-52. PubMed ID: 15820981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The defined presentation of nanoparticles to cells and their surface controlled uptake.
    Alberola AP; Rädler JO
    Biomaterials; 2009 Aug; 30(22):3766-70. PubMed ID: 19375161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular internalization and targeting of semiconductor quantum dots.
    Rozenzhak SM; Kadakia MP; Caserta TM; Westbrook TR; Stone MO; Naik RR
    Chem Commun (Camb); 2005 May; (17):2217-9. PubMed ID: 15856101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale controlled self-assembled monolayers and quantum dots.
    Shin SK; Yoon HJ; Jung YJ; Park JW
    Curr Opin Chem Biol; 2006 Oct; 10(5):423-9. PubMed ID: 16931110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells.
    Yukawa H; Kagami Y; Watanabe M; Oishi K; Miyamoto Y; Okamoto Y; Tokeshi M; Kaji N; Noguchi H; Ono K; Sawada M; Baba Y; Hamajima N; Hayashi S
    Biomaterials; 2010 May; 31(14):4094-103. PubMed ID: 20171733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of quantum dot nanoparticle cellular uptake.
    Zhang LW; Monteiro-Riviere NA
    Toxicol Sci; 2009 Jul; 110(1):138-55. PubMed ID: 19414515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. WGA-QD probe-based AFM detects WGA-binding sites on cell surface and WGA-induced rigidity alternation.
    Wang X; He D; Cai J; Chen T; Zou F; Li Y; Wu Y; Chen ZW; Chen Y
    Biochem Biophys Res Commun; 2009 Feb; 379(2):335-40. PubMed ID: 19103166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyvalent display and packing of peptides and proteins on semiconductor quantum dots: predicted versus experimental results.
    Prasuhn DE; Deschamps JR; Susumu K; Stewart MH; Boeneman K; Blanco-Canosa JB; Dawson PE; Medintz IL
    Small; 2010 Feb; 6(4):555-64. PubMed ID: 20077423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-step conjugation of antibodies to quantum dots for labeling cell surface receptors in mammalian cells.
    Iyer G; Xu J; Weiss S
    Methods Mol Biol; 2011; 751():553-63. PubMed ID: 21674354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.