BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18823112)

  • 1. Mononuclear and binuclear rhenium carbonyl nitrosyls: comparison with their manganese analogues.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Nov; 47(21):9836-47. PubMed ID: 18823112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binuclear manganese and rhenium carbonyls M2(CO)n (n = 10, 9, 8, 7): comparison of first row and third row transition metal carbonyl structures.
    Xu B; Li QS; Xie Y; King RB; Schaefer Iii HF
    Dalton Trans; 2008 May; (18):2495-502. PubMed ID: 18461206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse roles of hydrogen in rhenium carbonyl chemistry: hydrides, dihydrogen complexes, and a formyl derivative.
    Li N; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Nov; 114(43):11670-80. PubMed ID: 20942474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese carbonyl nitrosyls: comparison with isoelectronic iron carbonyl derivatives.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2006 Dec; 45(26):10849-58. PubMed ID: 17173444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unsaturated binuclear cyclopentadienylrhenium carbonyl derivatives: metal-metal multiple bonds and agostic hydrogen atoms.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Aug; 47(15):6779-90. PubMed ID: 18597417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mononuclear and binuclear manganese carbonyl hydrides: the preference for bridging hydrogens over bridging carbonyls.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2009 May; (19):3774-85. PubMed ID: 19417943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron carbonyl thiocarbonyls: effect of substituting a thiocarbonyl group for a carbonyl group in mononuclear and binuclear iron carbonyl derivatives.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Mar; 48(5):1974-88. PubMed ID: 19235959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospects for making organometallic compounds with BF ligands: fluoroborylene iron carbonyls.
    Xu L; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2010 Feb; 49(3):1046-55. PubMed ID: 20041690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binuclear iron carbonyl nitrosyls: bridging nitrosyls versus bridging carbonyls.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 Apr; 47(8):3045-55. PubMed ID: 18335979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium carbonyl nitrosyls: comparison with isoelectronic manganese carbonyl derivatives.
    Wang H; Xie Y; Zhang JD; King RB; Schaefer HF
    Inorg Chem; 2007 Mar; 46(5):1836-46. PubMed ID: 17269763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homoleptic mononuclear and binuclear osmium carbonyls Os(CO)n(n = 3-5) and Os2(CO)n (n = 8, 9): comparison with the iron analogues.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2008 May; 47(9):3869-78. PubMed ID: 18396867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrogen atoms on the structures of trinuclear metal carbonyl clusters: trinuclear manganese carbonyl hydrides.
    Liu XM; Wang CY; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 May; 48(10):4580-91. PubMed ID: 19371100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binuclear nickel carbonyl thiocarbonyls: metal-metal multiple bonds versus four-electron donor thiocarbonyl groups.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Feb; 114(6):2365-75. PubMed ID: 20104902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of binuclear chromium carbonyls by substitution of thiocarbonyl groups for carbonyl groups: nearly linear structures for Cr(2)(CS)(2)(CO)(9).
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2010 Jan; 114(1):486-97. PubMed ID: 19961211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possibilities for titanium-titanium multiple bonding in binuclear cyclopentadienyltitanium carbonyls: 16-electron metal configurations and four-electron donor bridging carbonyl groups as alternatives.
    Zhang X; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2010 Feb; 49(4):1961-75. PubMed ID: 20055429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binuclear rhenium carbonyl nitrosyls related to dicobalt octacarbonyl and their decarbonylation products.
    Xu B; Li QS; Xie Y; King RB
    J Mol Model; 2016 Jul; 22(7):157. PubMed ID: 27307059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binuclear cyclopentadienylmetal nitrosyls of iron, cobalt, and nickel: comparison with related carbonyl derivatives.
    Wang H; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2006 Jul; 45(14):5621-9. PubMed ID: 16813427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimetallocene carbonyls of the third-row transition metals: the quest for high-order metal-metal multiple bonds.
    Xu B; Li QS; Xie Y; King RB; Schaefer HF
    J Phys Chem A; 2009 Nov; 113(45):12470-7. PubMed ID: 19627131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binuclear cobalt thiocarbonyl carbonyl derivatives: comparison with homoleptic binuclear cobalt carbonyls.
    Zhang Z; Li QS; Xie Y; King RB; Schaefer HF
    Inorg Chem; 2009 Jul; 48(13):5973-82. PubMed ID: 19489594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsaturation and variable hapticity in binuclear azulene manganese carbonyl complexes.
    Sun Z; Wang H; Xie Y; King RB; Schaefer HF
    Dalton Trans; 2010 Nov; 39(44):10702-11. PubMed ID: 20957242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.