These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18823149)

  • 61. Enhanced multiple exciton dissociation from CdSe quantum rods: the effect of nanocrystal shape.
    Zhu H; Lian T
    J Am Chem Soc; 2012 Jul; 134(27):11289-97. PubMed ID: 22702343
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spectral dependence of the internal quantum efficiency of organic solar cells: effect of charge generation pathways.
    Armin A; Kassal I; Shaw PE; Hambsch M; Stolterfoht M; Lyons DM; Li J; Shi Z; Burn PL; Meredith P
    J Am Chem Soc; 2014 Aug; 136(32):11465-72. PubMed ID: 25089640
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Eu(3+)-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells.
    Shen J; Li Z; Cheng R; Luo Q; Luo Y; Chen Y; Chen X; Sun Z; Huang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17454-62. PubMed ID: 25269703
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity.
    Kaya M; Hajimirza S
    Sci Rep; 2018 May; 8(1):8170. PubMed ID: 29802283
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lead Selenide Colloidal Quantum Dot Solar Cells Achieving High Open-Circuit Voltage with One-Step Deposition Strategy.
    Zhang Y; Wu G; Ding C; Liu F; Yao Y; Zhou Y; Wu C; Nakazawa N; Huang Q; Toyoda T; Wang R; Hayase S; Zou Z; Shen Q
    J Phys Chem Lett; 2018 Jul; 9(13):3598-3603. PubMed ID: 29905077
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Colloidal PbSe Solar Cells with Molybdenum Oxide Modified Graphene Anodes.
    Wu H; Zhang X; Zhang Y; Yan L; Gao W; Zhang T; Wang Y; Zhao J; Yu WW
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21082-8. PubMed ID: 26355262
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Multifunctional Bilayer Template for Near-Infrared-Sensitive Organic Solar Cells.
    Kim H; Park HG; Maeng MJ; Kang YR; Park KR; Choi J; Park Y; Kim YD; Kim C
    ACS Appl Mater Interfaces; 2018 May; 10(19):16681-16689. PubMed ID: 29676150
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Multiexciton annihilation and dissociation in quantum confined semiconductor nanocrystals.
    Zhu H; Yang Y; Lian T
    Acc Chem Res; 2013 Jun; 46(6):1270-9. PubMed ID: 23148478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.
    Law M; Luther JM; Song Q; Hughes BK; Perkins CL; Nozik AJ
    J Am Chem Soc; 2008 May; 130(18):5974-85. PubMed ID: 18396872
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Facilely Achieved Self-Biased Black Silicon Heterojunction Photodiode with Broadband Quantum Efficiency Approaching 100.
    Zhang Y; Loh JYY; Kherani NP
    Adv Sci (Weinh); 2022 Nov; 9(33):e2203234. PubMed ID: 36253154
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.
    Lin KC; Wang L; Doane T; Kovalsky A; Pejic S; Burda C
    J Phys Chem B; 2014 Dec; 118(49):14027-36. PubMed ID: 24922464
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Luminescence nanocrystals for solar cell enhancement.
    Liu SM; Chen W; Wang ZG
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1418-29. PubMed ID: 20355533
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Singlet exciton fission photovoltaics.
    Lee J; Jadhav P; Reusswig PD; Yost SR; Thompson NJ; Congreve DN; Hontz E; Van Voorhis T; Baldo MA
    Acc Chem Res; 2013 Jun; 46(6):1300-11. PubMed ID: 23611026
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ligand enhanced upconversion of near-infrared photons with nanocrystal light absorbers.
    Huang Z; Simpson DE; Mahboub M; Li X; Tang ML
    Chem Sci; 2016 Jul; 7(7):4101-4104. PubMed ID: 30155053
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multiple-Color-Generating Cu(In,Ga)(S,Se)
    Yoo GY; Jeong JS; Lee S; Lee Y; Yoon HC; Chu VB; Park GS; Hwang YJ; Kim W; Min BK; Do YR
    ACS Appl Mater Interfaces; 2017 May; 9(17):14817-14826. PubMed ID: 28406026
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Enhanced quantum efficiency of the visible light photon counter in the ultraviolet wavelengths.
    McKay KS; Kim J; Hogue HH
    Opt Express; 2009 Apr; 17(9):7458-64. PubMed ID: 19399124
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reconstructing Space- and Energy-Dependent Exciton Generation in Solution-Processed Inverted Organic Solar Cells.
    Wang Y; Zhang Y; Lu G; Feng X; Xiao T; Xie J; Liu X; Ji J; Wei Z; Bu L
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13741-13747. PubMed ID: 29589431
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Efficiency dip observed with InGaN-based multiple quantum well solar cells.
    Lai KY; Lin GJ; Wu YR; Tsai ML; He JH
    Opt Express; 2014 Dec; 22 Suppl 7():A1753-60. PubMed ID: 25607489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.