These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18823206)

  • 1. How to stop and change a response: the role of goal activation in multitasking.
    Verbruggen F; Schneider DW; Logan GD
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1212-28. PubMed ID: 18823206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term aftereffects of response inhibition: memory retrieval, task goals, and cognitive control.
    Verbruggen F; Logan GD
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1229-35. PubMed ID: 18823207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the striatum in goal activation of cascaded actions.
    Ness V; Beste C
    Neuropsychologia; 2013 Nov; 51(13):2562-71. PubMed ID: 24080261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automaticity of cognitive control: goal priming in response-inhibition paradigms.
    Verbruggen F; Logan GD
    J Exp Psychol Learn Mem Cogn; 2009 Sep; 35(5):1381-8. PubMed ID: 19686032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interplay of stop signal inhibition and inhibition of return.
    Taylor TL; Ivanoff J
    Q J Exp Psychol A; 2003 Nov; 56(8):1349-71. PubMed ID: 14578089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects on response force in the stop-signal paradigm.
    Ko YT; Alsford T; Miller J
    J Exp Psychol Hum Percept Perform; 2012 Apr; 38(2):465-77. PubMed ID: 22288696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental trends in simple and selective inhibition of compatible and incompatible responses.
    van den Wildenberg WP; van der Molen MW
    J Exp Child Psychol; 2004 Mar; 87(3):201-20. PubMed ID: 14972598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory MEG responses predict successful and failed inhibition in a stop-signal task.
    Boehler CN; Münte TF; Krebs RM; Heinze HJ; Schoenfeld MA; Hopf JM
    Cereb Cortex; 2009 Jan; 19(1):134-45. PubMed ID: 18440947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-stop-signal adjustments: inhibition improves subsequent inhibition.
    Bissett PG; Logan GD
    J Exp Psychol Learn Mem Cogn; 2012 Jul; 38(4):955-66. PubMed ID: 22268912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. After-effects of goal shifting and response inhibition: a comparison of the stop-change and dual-task paradigms.
    Verbruggen F; Logan GD
    Q J Exp Psychol (Hove); 2008 Aug; 61(8):1151-9. PubMed ID: 18938760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the predictions of the central capacity sharing model.
    Tombu M; Jolicoeur P
    J Exp Psychol Hum Percept Perform; 2005 Aug; 31(4):790-802. PubMed ID: 16131250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of interference in the early processing stages on response inhibition in the stop signal task.
    Verbruggen F; Liefooghe B; Vandierendonck A
    Q J Exp Psychol (Hove); 2006 Jan; 59(1):190-203. PubMed ID: 16556567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociating consciousness from inhibitory control: evidence for unconsciously triggered response inhibition in the stop-signal task.
    van Gaal S; Ridderinkhof KR; van den Wildenberg WP; Lamme VA
    J Exp Psychol Hum Percept Perform; 2009 Aug; 35(4):1129-39. PubMed ID: 19653754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of interruptions on postcompletion and other procedural errors: an account based on the activation-based goal memory model.
    Li SY; Blandford A; Cairns P; Young RM
    J Exp Psychol Appl; 2008 Dec; 14(4):314-28. PubMed ID: 19102615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-or-none bottleneck versus capacity sharing accounts of the psychological refractory period phenomenon.
    Tombu M; Jolicoeur P
    Psychol Res; 2002 Nov; 66(4):274-86. PubMed ID: 12466925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A "gap effect" on stop signal reaction times in a human saccadic countermanding task.
    Stevenson SA; Elsley JK; Corneil BD
    J Neurophysiol; 2009 Feb; 101(2):580-90. PubMed ID: 19019975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of human cortico-motoneuronal excitability during the Stop-signal task.
    Badry R; Mima T; Aso T; Nakatsuka M; Abe M; Fathi D; Foly N; Nagiub H; Nagamine T; Fukuyama H
    Clin Neurophysiol; 2009 Sep; 120(9):1717-23. PubMed ID: 19683959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms.
    Verbruggen F; Logan GD
    J Exp Psychol Gen; 2008 Nov; 137(4):649-72. PubMed ID: 18999358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual stopping times and cognitive control: converging evidence for the stop signal task from a continuous tracking paradigm.
    Morein-Zamir S; Meiran N
    Q J Exp Psychol A; 2003 Apr; 56(3):469-89. PubMed ID: 12745844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The source of execution-related dual-task interference: motor bottleneck or response monitoring?
    Bratzke D; Rolke B; Ulrich R
    J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1413-26. PubMed ID: 19803646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.