These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 18823233)

  • 1. Neural systems supporting the control of affective and cognitive conflicts.
    Ochsner KN; Hughes B; Robertson ER; Cooper JC; Gabrieli JD
    J Cogn Neurosci; 2009 Sep; 21(9):1842-55. PubMed ID: 18823233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attentional control of task and response in lateral and medial frontal cortex: brain activity and reaction time distributions.
    Aarts E; Roelofs A; van Turennout M
    Neuropsychologia; 2009 Aug; 47(10):2089-99. PubMed ID: 19467359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct neural correlates for resolving stroop conflict at inhibited and noninhibited locations in inhibition of return.
    Chen Q; Wei P; Zhou X
    J Cogn Neurosci; 2006 Nov; 18(11):1937-46. PubMed ID: 17069483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive and affective control in a flanker word task: common and dissociable brain mechanisms.
    Alguacil S; Tudela P; Ruz M
    Neuropsychologia; 2013 Aug; 51(9):1663-72. PubMed ID: 23747603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z; Lei X; Ding C; Li H; Chen A
    Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite effect of conflict context modulation on neural mechanisms of cognitive and affective control.
    Chen T; Kendrick KM; Feng C; Yang S; Wang X; Yang X; Lei D; Wu M; Huang X; Gong Q; Luo Y
    Psychophysiology; 2014 May; 51(5):478-88. PubMed ID: 24635546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How does the brain mediate interpretation of incongruent auditory emotions? The neural response to prosody in the presence of conflicting lexico-semantic cues.
    Mitchell RL
    Eur J Neurosci; 2006 Dec; 24(12):3611-8. PubMed ID: 17229109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices.
    Kim C; Chung C; Kim J
    Brain Res; 2013 Nov; 1537():216-23. PubMed ID: 24012877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation.
    Milham MP; Banich MT
    Hum Brain Mapp; 2005 Jul; 25(3):328-35. PubMed ID: 15834861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.
    Rahm C; Liberg B; Wiberg-Kristoffersen M; Aspelin P; Msghina M
    Scand J Psychol; 2013 Apr; 54(2):66-71. PubMed ID: 23316801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural mechanism of cognitive control for resolving conflict between abstract task rules.
    Sheu YS; Courtney SM
    Cortex; 2016 Dec; 85():13-24. PubMed ID: 27771559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural systems underlying decisions about affective odors.
    Rolls ET; Grabenhorst F; Parris BA
    J Cogn Neurosci; 2010 May; 22(5):1069-82. PubMed ID: 19320548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Affective ambiguity for a group recruits ventromedial prefrontal cortex.
    Simmons A; Stein MB; Matthews SC; Feinstein JS; Paulus MP
    Neuroimage; 2006 Jan; 29(2):655-61. PubMed ID: 16125977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conflict adjustment through domain-specific multiple cognitive control mechanisms.
    Kim C; Chung C; Kim J
    Brain Res; 2012 Mar; 1444():55-64. PubMed ID: 22305142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex.
    Kronhaus DM; Lawrence NS; Williams AM; Frangou S; Brammer MJ; Williams SC; Andrew CM; Phillips ML
    Bipolar Disord; 2006 Feb; 8(1):28-39. PubMed ID: 16411978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of valence and divided attention on cognitive reappraisal processes.
    Morris JA; Leclerc CM; Kensinger EA
    Soc Cogn Affect Neurosci; 2014 Dec; 9(12):1952-61. PubMed ID: 24493837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive conflict increases processing of negative, task-irrelevant stimuli.
    Ligeza TS; Wyczesany M
    Int J Psychophysiol; 2017 Oct; 120():126-135. PubMed ID: 28757233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.