These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

35 related articles for article (PubMed ID: 18823277)

  • 1. Detachment of affinity-captured bioparticles by elastic deformation of a macroporous hydrogel.
    Dainiak MB; Kumar A; Galaev IY; Mattiasson B
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):849-54. PubMed ID: 16418282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How the Crosslinker Amount Influences the Final Properties of Hydroxyethyl Methacrylate Cryogels.
    Proietto Salanitri G; Luzzi E; Caretti D; Mecca T; Carroccio SC; Scamporrino AA
    Gels; 2024 Feb; 10(3):. PubMed ID: 38534581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration.
    Carriero VC; Di Muzio L; Petralito S; Casadei MA; Paolicelli P
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bibliometric Analysis of the Global Trend of Using Alginate, Gelatine, and Hydroxyapatite for Bone Tissue Regeneration Applications.
    Hussin MSF; Mohd Serah A; Azlan KA; Abdullah HZ; Idris MI; Ghazali I; Mohd Shariff AH; Huda N; Zakaria AA
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of rats and mice as animal models in ex vivo bone growth and development studies.
    Abubakar AA; Noordin MM; Azmi TI; Kaka U; Loqman MY
    Bone Joint Res; 2016 Dec; 5(12):610-618. PubMed ID: 27965220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications.
    Savina IN; Ingavle GC; Cundy AB; Mikhalovsky SV
    Sci Rep; 2016 Feb; 6():21154. PubMed ID: 26883390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone-coated 3D printed tricalcium phosphate scaffolds for bone tissue engineering: in vitro alendronate release behavior and local delivery effect on in vivo osteogenesis.
    Tarafder S; Bose S
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):9955-65. PubMed ID: 24826838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production.
    Jain E; Kumar A
    Nat Protoc; 2013 May; 8(5):821-35. PubMed ID: 23558783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial Design of Hydrolytically Degradable, Bone-like Biocomposites Based on PHEMA and Hydroxyapatite.
    Huang J; Zhao D; Dangaria SJ; Luan X; Diekwisch TG; Jiang G; Saiz E; Liu G; Tomsia AP
    Polymer (Guildf); 2013 Jan; 54(2):909-919. PubMed ID: 23525786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable preformed scaffolds with shape-memory properties.
    Bencherif SA; Sands RW; Bhatta D; Arany P; Verbeke CS; Edwards DA; Mooney DJ
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19590-5. PubMed ID: 23150549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous protein-based scaffolds prepared through freezing as potential scaffolds for tissue engineering.
    Elowsson L; Kirsebom H; Carmignac V; Durbeej M; Mattiasson B
    J Mater Sci Mater Med; 2012 Oct; 23(10):2489-98. PubMed ID: 22772482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element method (FEM), mechanobiology and biomimetic scaffolds in bone tissue engineering.
    Boccaccio A; Ballini A; Pappalettere C; Tullo D; Cantore S; Desiate A
    Int J Biol Sci; 2011 Jan; 7(1):112-32. PubMed ID: 21278921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ingrowth of bone cells within biodegradable cryogel scaffolds in bioreactors at different regimes.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    Tissue Eng Part A; 2008 Oct; 14(10):1743-50. PubMed ID: 18823277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: an animal model.
    Bölgen N; Vargel I; Korkusuz P; Güzel E; Plieva F; Galaev I; Matiasson B; Pişkin E
    J Biomed Mater Res A; 2009 Oct; 91(1):60-8. PubMed ID: 18690660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryogelation for preparation of novel biodegradable tissue-engineering scaffolds.
    Bölgen N; Plieva F; Galaev IY; Mattiasson B; Pişkin E
    J Biomater Sci Polym Ed; 2007; 18(9):1165-79. PubMed ID: 17931506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional cryogels for biomedical applications.
    Razavi M; Qiao Y; Thakor AS
    J Biomed Mater Res A; 2019 Dec; 107(12):2736-2755. PubMed ID: 31408265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive review of cryogels and their roles in tissue engineering applications.
    Hixon KR; Lu T; Sell SA
    Acta Biomater; 2017 Oct; 62():29-41. PubMed ID: 28851666
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.