BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18823631)

  • 1. The free solution electrophoretic mobility of peptides by a bead modeling methodology.
    Pei H; Allison S
    J Chromatogr A; 2009 Mar; 1216(10):1908-16. PubMed ID: 18823631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using electrophoretic mobility and bead modeling to characterize the charge and secondary structure of peptides.
    Pei H; Xin Y; Allison SA
    J Sep Sci; 2008 Feb; 31(3):555-64. PubMed ID: 18219654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the electrophoresis of peptides and proteins: improvements in the "bead method" to include ion relaxation and "finite size effects".
    Xin Y; Hess R; Ho N; Allison S
    J Phys Chem B; 2006 Dec; 110(49):25033-44. PubMed ID: 17149927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the electrophoresis of oligoglycines.
    Allison SA; Pei H; Twahir U; Wu H; Cottet H
    J Sep Sci; 2010 Aug; 33(16):2430-8. PubMed ID: 20533348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the electrophoresis of oligolysines.
    Allison SA; Perrin C; Cottet H
    Electrophoresis; 2011 Oct; 32(20):2788-96. PubMed ID: 21953332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the evaluation of net charge, hydrodynamic size and shape of peptides through experimental electrophoretic mobilities obtained from CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2006 Dec; 27(23):4631-47. PubMed ID: 17136715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the free solution and gel electrophoresis of biopolymers: the bead array-effective medium model.
    Allison SA; Pei H; Xin Y
    Biopolymers; 2007 Oct 5-15; 87(2-3):102-14. PubMed ID: 17636508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the electrophoresis and transport of peptides: the effective sphere model and complex formation.
    Allison SA; Pei H; Allen M; Brown J; Kim CI; Zhen Y
    J Sep Sci; 2010 Aug; 33(16):2439-46. PubMed ID: 20645386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of global structural and transport properties of peptides through the modeling of their CZE mobility data.
    Piaggio MV; Peirotti MB; Deiber JA
    J Sep Sci; 2010 Aug; 33(16):2423-9. PubMed ID: 20506428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the electrophoretic mobility and diffusion of weakly charged peptides.
    Xin Y; Mitchell H; Cameron H; Allison SA
    J Phys Chem B; 2006 Jan; 110(2):1038-45. PubMed ID: 16471640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the microenvironment-pH and charge and size characteristics of amino acids through their electrophoretic mobilities determined by CZE.
    Piaggio MV; Peirotti MB; Deiber JA
    Electrophoresis; 2007 Oct; 28(20):3658-73. PubMed ID: 17941132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic mobilities and migrating analytes: Part 1: Relationships.
    Cross RF; Wong MG
    J Capill Electrophor Microchip Technol; 2002; 7(5-6):119-24. PubMed ID: 12546161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific ion effects on the electrophoretic mobility of small, highly charged peptides: a modeling study.
    Allison SA; Wu H; Bui TM; Dang L; Huynh GH; Nguyen T; Soegiarto L; Truong BC
    J Sep Sci; 2014 Sep; 37(17):2403-10. PubMed ID: 24958616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of electrophoretic mobilities of peptides in capillary zone electrophoresis by quantitative structure-mobility relationships using the Offord model and artificial neural networks.
    Jalali-Heravi M; Shen Y; Hassanisadi M; Khaledi MG
    Electrophoresis; 2005 May; 26(10):1874-85. PubMed ID: 15825217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the electrophoresis of highly charged peptides: application to oligolysines.
    Wu H; Allison SA; Perrin C; Cottet H
    J Sep Sci; 2012 Feb; 35(4):556-62. PubMed ID: 22282417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global chain properties of an all l-α-eicosapeptide with a secondary α-helix and its all retro d-inverso-α-eicosapeptide estimated through the modeling of their CZE-determined electrophoretic mobilities.
    Deiber JA; Piaggio MV; Peirotti MB
    Electrophoresis; 2014 Mar; 35(5):755-61. PubMed ID: 24293200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic behavior of L- and D-alanine-scanning analogs of a yeast tridecapeptide pheromone in a fused-silica capillary.
    Zhang YL; Becker JM; Naider FR
    Anal Biochem; 1996 Oct; 241(2):220-7. PubMed ID: 8921191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration, charge, size, and shape characteristics of peptides from their CZE analyses.
    Peirotti MB; Piaggio MV; Deiber JA
    J Sep Sci; 2008 Feb; 31(3):548-54. PubMed ID: 18266265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of carrier ampholyte-based capillary electrophoresis for separation of peptides and peptide mimetics.
    Koval D; Busnel JM; Hlavácek J; Jirácek J; Kasicka V; Peltre G
    Electrophoresis; 2008 Sep; 29(18):3759-67. PubMed ID: 18850645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.