BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18823705)

  • 1. Equilibrium studies on hydrolysis of urea in a semi-batch reactor for production of ammonia to reduce hazardous pollutants from flue gases.
    Sahu JN; Mahalik KK; Patwardhan AV; Meikap BC
    J Hazard Mater; 2009 May; 164(2-3):659-64. PubMed ID: 18823705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on hydrolysis of urea in a semi-batch reactor at atmospheric pressure for safe use of ammonia in a power plant for flue gas conditioning.
    Mahalik K; Sahu JN; Patwardhan AV; Meikap BC
    J Hazard Mater; 2010 Mar; 175(1-3):629-37. PubMed ID: 19914776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical modelling and optimization of hydrolysis of urea to generate ammonia for flue gas conditioning.
    Mahalik K; Sahu JN; Patwardhan AV; Meikap BC
    J Hazard Mater; 2010 Oct; 182(1-3):603-10. PubMed ID: 20643504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization process parameters for in-situ synthesis of ammonia by catalytic hydrolysis of urea with fly ash in a batch reactor for safe feedstock in power plants.
    Sahu JN; Gangadharan P; Meikap BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(8):874-86. PubMed ID: 21714628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor.
    Rahimpour MR; Asgari A
    J Hazard Mater; 2008 May; 153(1-2):557-65. PubMed ID: 17936505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and modeling study of the effect of CO and H2 on the urea DeNO(x) process in a 150kW laboratory reactor.
    Javed MT; Nimmo W; Gibbs BM
    Chemosphere; 2008 Jan; 70(6):1059-67. PubMed ID: 17845815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modeling and experimental study of flue gas desulfurization in a dense phase tower.
    Chang G; Song C; Wang L
    J Hazard Mater; 2011 May; 189(1-2):134-40. PubMed ID: 21377795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of SO2 from simulated flue gases using non-thermal plasma-based microgap discharge.
    Zhang Z; Bai M; Bai M; Bai X; Pan Q
    J Air Waste Manag Assoc; 2006 Jun; 56(6):810-5. PubMed ID: 16805405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hg2+ reduction and re-emission from simulated wet flue gas desulfurization liquors.
    Wo J; Zhang M; Cheng X; Zhong X; Xu J; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1106-10. PubMed ID: 19699584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous absorption of NO and SO2 into hexamminecobalt(II)/iodide solution.
    Long XL; Xiao WD; Yuan WK
    Chemosphere; 2005 May; 59(6):811-7. PubMed ID: 15811409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction.
    Javed MT; Irfan N; Gibbs BM
    J Environ Manage; 2007 May; 83(3):251-89. PubMed ID: 16842901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping behavior of gaseous cesium by fly ash filters.
    Shin JM; Park JJ; Song KC; Kim JH
    Appl Radiat Isot; 2009; 67(7-8):1534-9. PubMed ID: 19375925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for emission reduction of air pollutants produced from a chemical plant.
    Lee BK; Cho SW
    Environ Manage; 2003 Jan; 31(1):42-9. PubMed ID: 12447574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaseous emissions from waste combustion.
    Werther J
    J Hazard Mater; 2007 Jun; 144(3):604-13. PubMed ID: 17339077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of a new wastewater treatment coagulant from fly ash with concomitant flue gas scrubbing.
    Li L; Fan M; Brown RC; Koziel JA; van Leeuwen JH
    J Hazard Mater; 2009 Mar; 162(2-3):1430-7. PubMed ID: 18640777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of urea hydrolysis and binding of ammonia to wheat straw during ammoniation by urea.
    Makkar HP; Singh B
    J Dairy Sci; 1987 Jun; 70(6):1313-7. PubMed ID: 3611488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of oxygenated liquid additives on the urea based SNCR process.
    Tayyeb Javed M; Nimmo W; Mahmood A; Irfan N
    J Environ Manage; 2009 Aug; 90(11):3429-35. PubMed ID: 19540035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of flue gas conditions on NO oxidation process by DC corona radical shower].
    Wu ZL; Gao X; Li MB; Zhang YS; Wu ZC; Luo ZY; Ni MJ; Cen KF
    Huan Jing Ke Xue; 2005 May; 26(3):7-11. PubMed ID: 16124460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous removing SO2 and NO by a new system containing cobalt complex.
    Zhou CQ; Deng XH; Pan ZQ
    J Environ Sci (China); 2006; 18(3):567-71. PubMed ID: 17294658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect and mechanism of coking residual ammonia water treating by flue gas.
    Cheng ZJ; Yin GJ; Yang LQ; Wang W; Cheng DD
    J Environ Sci (China); 2001 Apr; 13(2):237-46. PubMed ID: 11590750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.