BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18823881)

  • 1. Polarized light-stimulated enzymatic hydrolysis of chitin and chitosan.
    Konieczna-Molenda A; Fiedorowicz M; Zhong W; Tomasik P
    Carbohydr Res; 2008 Dec; 343(18):3117-9. PubMed ID: 18823881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources.
    Donzelli BG; Ostroff G; Harman GE
    Carbohydr Res; 2003 Sep; 338(18):1823-33. PubMed ID: 12932365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides.
    Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG
    FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Chitosan depolymerization by enzymes from hepatopancreas of the crab Paralithodes camtschaticus].
    Novikov VIu; Mukhin VA
    Prikl Biokhim Mikrobiol; 2003; 39(5):530-5. PubMed ID: 14593865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of enzymes acting on chitin and chitosan.
    Eijsink V; Hoell I; Vaaje-Kolstada G
    Biotechnol Genet Eng Rev; 2010; 27():331-66. PubMed ID: 21415904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chitinolytic functions in actinobacteria: ecology, enzymes, and evolution.
    Lacombe-Harvey MÈ; Brzezinski R; Beaulieu C
    Appl Microbiol Biotechnol; 2018 Sep; 102(17):7219-7230. PubMed ID: 29931600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of chitosanase-oligosaccharide interaction: subsite structure of Streptomyces sp. N174 chitosanase and the role of Asp57 carboxylate.
    Tremblay H; Yamaguchi T; Fukamizo T; Brzezinski R
    J Biochem; 2001 Nov; 130(5):679-86. PubMed ID: 11686931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction mechanism of chitosanase from Streptomyces sp. N174.
    Fukamizo T; Honda Y; Goto S; Boucher I; Brzezinski R
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):377-83. PubMed ID: 7487871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170.
    Hult EL; Katouno F; Uchiyama T; Watanabe T; Sugiyama J
    Biochem J; 2005 Jun; 388(Pt 3):851-6. PubMed ID: 15717865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation.
    Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M
    FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitinase-catalyzed synthesis of alternatingly N-deacetylated chitin: a chitin-chitosan hybrid polysaccharide.
    Makino A; Kurosaki K; Ohmae M; Kobayashi S
    Biomacromolecules; 2006 Mar; 7(3):950-7. PubMed ID: 16529436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of chitinase from Escherichia fergusonii, chitosanase from Chryseobacterium indologenes, Comamonas koreensis and its application in N-acetylglucosamine production.
    Kim TI; Lim DH; Baek KS; Jang SS; Park BY; Mayakrishnan V
    Int J Biol Macromol; 2018 Jun; 112():1115-1121. PubMed ID: 29452184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase.
    Hamre AG; Eide KB; Wold HH; Sørlie M
    Carbohydr Res; 2015 Apr; 407():166-9. PubMed ID: 25812992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens.
    Horn SJ; Sørbotten A; Synstad B; Sikorski P; Sørlie M; Vårum KM; Eijsink VG
    FEBS J; 2006 Feb; 273(3):491-503. PubMed ID: 16420473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity.
    Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M
    Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of a conserved tryptophan in the chitin-binding cleft of Serratia marcescens chitinase A enhances transglycosylation.
    Aronson NN; Halloran BA; Alexeyev MF; Zhou XE; Wang Y; Meehan EJ; Chen L
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):243-51. PubMed ID: 16428843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.
    Kurašin M; Kuusk S; Kuusk P; Sørlie M; Väljamäe P
    J Biol Chem; 2015 Nov; 290(48):29074-85. PubMed ID: 26468285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, expression and characterization of a novel chitosanase from Streptomyces albolongus ATCC 27414.
    Guo N; Sun J; Wang W; Gao L; Liu J; Liu Z; Xue C; Mao X
    Food Chem; 2019 Jul; 286():696-702. PubMed ID: 30827665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new bifunctional chitosanase enzyme from Streptomyces sp. and its application in production of antioxidant chitooligosaccharides.
    Sinha S; Tripathi P; Chand S
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1029-39. PubMed ID: 22322828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining chitinase C and N-acetylhexosaminidase from Streptomyces coelicolor A3(2) provides an efficient way to synthesize N-acetylglucosamine from crystalline chitin.
    Nguyen-Thi N; Doucet N
    J Biotechnol; 2016 Feb; 220():25-32. PubMed ID: 26767320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.