These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 18824191)

  • 1. Refractive index measurement of the isolated crystalline lens using optical coherence tomography.
    Uhlhorn SR; Borja D; Manns F; Parel JM
    Vision Res; 2008 Dec; 48(27):2732-8. PubMed ID: 18824191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractive index measurement of the mouse crystalline lens using optical coherence tomography.
    Chakraborty R; Lacy KD; Tan CC; Park HN; Pardue MT
    Exp Eye Res; 2014 Aug; 125():62-70. PubMed ID: 24939747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo measurement of the average refractive index of the human crystalline lens using optical coherence tomography.
    de Freitas C; Ruggeri M; Manns F; Ho A; Parel JM
    Opt Lett; 2013 Jan; 38(2):85-7. PubMed ID: 23454923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in lens dimensions and refractive index with age and accommodation.
    Jones CE; Atchison DA; Pope JM
    Optom Vis Sci; 2007 Oct; 84(10):990-5. PubMed ID: 18049365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation.
    Kasthurirangan S; Markwell EL; Atchison DA; Pope JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2531-40. PubMed ID: 18408189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical Coherence Tomography Based Estimates of Crystalline Lens Volume, Equatorial Diameter, and Plane Position.
    Martinez-Enriquez E; Sun M; Velasco-Ocana M; Birkenfeld J; Pérez-Merino P; Marcos S
    Invest Ophthalmol Vis Sci; 2016 Jul; 57(9):OCT600-10. PubMed ID: 27627188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro.
    Moffat BA; Atchison DA; Pope JM
    Vision Res; 2002 Jun; 42(13):1683-93. PubMed ID: 12079796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography of the anterior segment in eyes with phakic refractive lenses.
    Koivula A; Kugelberg M
    Ophthalmology; 2007 Nov; 114(11):2031-7. PubMed ID: 17765311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystalline lens gradient refractive index distribution in the guinea pig.
    de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S
    Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-Dependence of the Peripheral Defocus of the Isolated Human Crystalline Lens.
    Maceo Heilman B; Mohamed A; Ruggeri M; Williams S; Ho A; Parel JM; Manns F
    Invest Ophthalmol Vis Sci; 2021 Mar; 62(3):15. PubMed ID: 33688927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biometric, optical and physical changes in the isolated human crystalline lens with age in relation to presbyopia.
    Glasser A; Campbell MC
    Vision Res; 1999 Jun; 39(11):1991-2015. PubMed ID: 10343784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distortion correction of OCT images of the crystalline lens: gradient index approach.
    Siedlecki D; de Castro A; Gambra E; Ortiz S; Borja D; Uhlhorn S; Manns F; Marcos S; Parel JM
    Optom Vis Sci; 2012 May; 89(5):E709-18. PubMed ID: 22466105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of the crystalline lens gradient refractive index to the accommodation amplitude in non-human primates: in vitro studies.
    Maceo BM; Manns F; Borja D; Nankivil D; Uhlhorn S; Arrieta E; Ho A; Augusteyn RC; Parel JM
    J Vis; 2011 Nov; 11(13):23. PubMed ID: 22131444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical power of the isolated human crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth N; Rosen AM; Jain R; Amelinckx A; Arrieta E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2541-8. PubMed ID: 18316704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Refractive Index Measurement of the Crystalline Lens in Vivo.
    He JC
    Optom Vis Sci; 2023 Dec; 100(12):823-832. PubMed ID: 37890121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lens thickness with age and accommodation by optical coherence tomography.
    Richdale K; Bullimore MA; Zadnik K
    Ophthalmic Physiol Opt; 2008 Sep; 28(5):441-7. PubMed ID: 18761481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.