These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18824260)

  • 41. In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization.
    Felfel RM; Poocza L; Gimeno-Fabra M; Milde T; Hildebrand G; Ahmed I; Scotchford C; Sottile V; Grant DM; Liefeith K
    Biomed Mater; 2016 Feb; 11(1):015011. PubMed ID: 26836023
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT
    Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biocompatibility and safety evaluation of a ricinoleic acid-based poly(ester-anhydride) copolymer after implantation in rats.
    Vaisman B; Motiei M; Nyska A; Domb AJ
    J Biomed Mater Res A; 2010 Feb; 92(2):419-31. PubMed ID: 19191319
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis and evaluation of novel biodegradable hydrogels based on poly(ethylene glycol) and sebacic acid as tissue engineering scaffolds.
    Kim J; Lee KW; Hefferan TE; Currier BL; Yaszemski MJ; Lu L
    Biomacromolecules; 2008 Jan; 9(1):149-57. PubMed ID: 18072747
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis and characterization of hydrolytically degradable copolyester biomaterials based on glycolic acid, sebacic acid and ethylene glycol.
    Simitzis J; Soulis S; Triantou D; Zoumpoulakis L; Zotali P
    J Mater Sci Mater Med; 2011 Dec; 22(12):2673-84. PubMed ID: 22057968
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J
    Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physicobiological properties and biocompatibility of biodegradable poly(oxalate-co-oxamide).
    Song Y; Kwon J; Kim B; Jeon Y; Khang G; Lee D
    J Biomed Mater Res A; 2011 Sep; 98(4):517-26. PubMed ID: 21681944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers.
    Hou Q; Grijpma DW; Feijen J
    Acta Biomater; 2009 Jun; 5(5):1543-51. PubMed ID: 19179128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of biodegradable PLA/PLGA membranes with PGA mesh and their application for periodontal guided tissue regeneration.
    Kim EJ; Yoon SJ; Yeo GD; Pai CM; Kang IK
    Biomed Mater; 2009 Oct; 4(5):055001. PubMed ID: 19776491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vivo degradation and elimination of injectable ricinoleic acid-based poly(ester-anhydride).
    Vaisman B; Ickowicz DE; Abtew E; Haim-Zada M; Shikanov A; Domb AJ
    Biomacromolecules; 2013 May; 14(5):1465-73. PubMed ID: 23530926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly(L-lactide) composites.
    Liu A; Hong Z; Zhuang X; Chen X; Cui Y; Liu Y; Jing X
    Acta Biomater; 2008 Jul; 4(4):1005-15. PubMed ID: 18359672
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K; Ju YM; Son JS; Ahn KD; Han DK
    J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A library of L-tyrosine-derived biodegradable polyarylates for potential biomaterial applications, part I: synthesis, characterization and accelerated hydrolytic degradation.
    Huang X; Shen CY; Chen JC; Li Q
    J Biomater Sci Polym Ed; 2009; 20(7-8):935-55. PubMed ID: 19454161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of poly[(R)-3-hydroxyalkanoate] copolymers with controlled repeating unit compositions and physical properties.
    Tappel RC; Kucharski JM; Mastroianni JM; Stipanovic AJ; Nomura CT
    Biomacromolecules; 2012 Sep; 13(9):2964-72. PubMed ID: 22873826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The biocompatibility of rapidly degrading polymeric stents in porcine carotid arteries.
    Zamiri P; Kuang Y; Sharma U; Ng TF; Busold RH; Rago AP; Core LA; Palasis M
    Biomaterials; 2010 Nov; 31(31):7847-55. PubMed ID: 20696471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair.
    Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y
    J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro and in vivo studies on blends of isotactic and atactic poly (3-hydroxybutyrate) for development of a dura substitute material.
    Kunze C; Edgar Bernd H; Androsch R; Nischan C; Freier T; Kramer S; Kramp B; Schmitz KP
    Biomaterials; 2006 Jan; 27(2):192-201. PubMed ID: 16046233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A biodegradable vascularizing membrane: a feasibility study.
    Kaushiva A; Turzhitsky VM; Darmoc M; Backman V; Ameer GA
    Acta Biomater; 2007 Sep; 3(5):631-42. PubMed ID: 17507300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Poly(epsilon-caprolactone) and poly (L-lactic-co-glycolic acid) degradable polymer sponges attenuate astrocyte response and lesion growth in acute traumatic brain injury.
    Wong DY; Hollister SJ; Krebsbach PH; Nosrat C
    Tissue Eng; 2007 Oct; 13(10):2515-23. PubMed ID: 17655492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.