These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 18824300)

  • 41. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.
    Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R
    J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A comparative evaluation of hexavalent chromium treatment in contaminated soil by calcium polysulfide and green-tea nanoscale zero-valent iron.
    Chrysochoou M; Johnston CP; Dahal G
    J Hazard Mater; 2012 Jan; 201-202():33-42. PubMed ID: 22169240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrokinetic removal of chromium and copper from contaminated soils by lactic acid enhancement in the catholyte.
    Zhou DM; Alshawabkeh AN; Deng CF; Cang L; Si YB
    J Environ Sci (China); 2004; 16(4):529-32. PubMed ID: 15495949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite.
    Su C; Ludwig RD
    Environ Sci Technol; 2005 Aug; 39(16):6208-16. PubMed ID: 16173583
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of mesoporous magnetic gamma-Fe2O3 and its application to Cr(VI) removal from contaminated water.
    Wang P; Lo IM
    Water Res; 2009 Aug; 43(15):3727-34. PubMed ID: 19559458
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents.
    Janos P; Hůla V; Bradnová P; Pilarová V; Sedlbauer J
    Chemosphere; 2009 May; 75(6):732-8. PubMed ID: 19215962
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hardness and carbonate effects on the reactivity of zero-valent iron for Cr(VI) removal.
    Lo IM; Lam CS; Lai KC
    Water Res; 2006 Feb; 40(3):595-605. PubMed ID: 16406049
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue.
    Whittleston RA; Stewart DI; Mortimer RJ; Tilt ZC; Brown AP; Geraki K; Burke IT
    J Hazard Mater; 2011 Oct; 194():15-23. PubMed ID: 21871726
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transient behavior of heavy metals in soils during electrokinetic remediation.
    Al-Hamdan AZ; Reddy KR
    Chemosphere; 2008 Mar; 71(5):860-71. PubMed ID: 18155269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.
    Liu T; Rao P; Mak MS; Wang P; Lo IM
    Water Res; 2009 May; 43(9):2540-8. PubMed ID: 19321187
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel method for speciation of Cr(III) and Cr(VI) and individual determination using Duolite C20 modified with active hydrazone.
    Hassanien MM; Kenawy IM; El-Menshawy AM; El-Asmy AA
    J Hazard Mater; 2008 Oct; 158(1):170-6. PubMed ID: 18313847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Remediation of chromium (VI) contaminated soils using permeable reactive composite electrodes technology].
    Fu RB; Liu F; Ma J; Zhang CB; He GF
    Huan Jing Ke Xue; 2012 Jan; 33(1):280-5. PubMed ID: 22452223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Indirect speciation of Cr(III) and Cr(VI) in water samples by selective separation and preconcentration on a newly synthesized chelating resin.
    Tokalioğlu S; Arsav S; Delibaş A; Soykan C
    Anal Chim Acta; 2009 Jul; 645(1-2):36-41. PubMed ID: 19481628
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hexavalent chromium removal from aqueous solution by adsorption on aluminum magnesium mixed hydroxide.
    Li Y; Gao B; Wu T; Sun D; Li X; Wang B; Lu F
    Water Res; 2009 Jul; 43(12):3067-75. PubMed ID: 19439337
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhancement of electrokinetic remediation of hyper-Cr(VI) contaminated clay by zero-valent iron.
    Weng CH; Lin YT; Lin TY; Kao CM
    J Hazard Mater; 2007 Oct; 149(2):292-302. PubMed ID: 17485164
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced abiotic reduction of Cr(VI) in a soil slurry system by natural biomaterial addition.
    Park D; Ahn CK; Kim YM; Yun YS; Park JM
    J Hazard Mater; 2008 Dec; 160(2-3):422-7. PubMed ID: 18434006
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron.
    Dontsova KM; Hayes C; Pennington JC; Porter B
    J Environ Qual; 2009; 38(4):1458-65. PubMed ID: 19465721
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective adsorption and separation of chromium (VI) on the magnetic iron-nickel oxide from waste nickel liquid.
    Wei L; Yang G; Wang R; Ma W
    J Hazard Mater; 2009 May; 164(2-3):1159-63. PubMed ID: 18954940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.