BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18824416)

  • 1. In vivo studies of polyacrylate nanoparticle emulsions for topical and systemic applications.
    Greenhalgh K; Turos E
    Nanomedicine; 2009 Mar; 5(1):46-54. PubMed ID: 18824416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penicillin-bound polyacrylate nanoparticles: restoring the activity of beta-lactam antibiotics against MRSA.
    Turos E; Reddy GS; Greenhalgh K; Ramaraju P; Abeylath SC; Jang S; Dickey S; Lim DV
    Bioorg Med Chem Lett; 2007 Jun; 17(12):3468-72. PubMed ID: 17420125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for purifying and detoxifying sodium dodecyl sulfate-stabilized polyacrylate nanoparticles.
    Garay-Jimenez JC; Young A; Gergeres D; Greenhalgh K; Turos E
    Nanomedicine; 2008 Jun; 4(2):98-105. PubMed ID: 18472305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.
    Garay-Jimenez JC; Turos E
    Bioorg Med Chem Lett; 2011 Aug; 21(15):4589-91. PubMed ID: 21704525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties and biological activity of poly(butyl acrylate-styrene) nanoparticle emulsions prepared with conventional and polymerizable surfactants.
    Garay-Jimenez JC; Gergeres D; Young A; Lim DV; Turos E
    Nanomedicine; 2009 Dec; 5(4):443-51. PubMed ID: 19523413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibiotic-conjugated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents.
    Turos E; Shim JY; Wang Y; Greenhalgh K; Reddy GS; Dickey S; Lim DV
    Bioorg Med Chem Lett; 2007 Jan; 17(1):53-6. PubMed ID: 17049850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insight into the dermal delivery from nanoparticle-coated submicron O/W emulsions.
    Eskandar NG; Simovic S; Prestidge CA
    J Pharm Sci; 2010 Feb; 99(2):890-904. PubMed ID: 19655375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quercetin topical application, from conventional dosage forms to nanodosage forms.
    Hatahet T; Morille M; Hommoss A; Devoisselle JM; Müller RH; Bégu S
    Eur J Pharm Biopharm; 2016 Nov; 108():41-53. PubMed ID: 27565033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation effects of topical emulsions on transdermal and dermal delivery.
    Otto A; du Plessis J; Wiechers JW
    Int J Cosmet Sci; 2009 Feb; 31(1):1-19. PubMed ID: 19134123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).
    Silmore KS; Gupta C; Washburn NR
    J Colloid Interface Sci; 2016 Mar; 466():91-100. PubMed ID: 26707776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection.
    Martinez LR; Han G; Chacko M; Mihu MR; Jacobson M; Gialanella P; Friedman AJ; Nosanchuk JD; Friedman JM
    J Invest Dermatol; 2009 Oct; 129(10):2463-9. PubMed ID: 19387479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.
    Abeylath SC; Turos E; Dickey S; Lim DV
    Bioorg Med Chem; 2008 Mar; 16(5):2412-8. PubMed ID: 18063370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomedicine strategies for targeting skin inflammation.
    Abdel-Mottaleb MM; Try C; Pellequer Y; Lamprecht A
    Nanomedicine (Lond); 2014 Aug; 9(11):1727-43. PubMed ID: 25321172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.
    Esteban PP; Alves DR; Enright MC; Bean JE; Gaudion A; Jenkins AT; Young AE; Arnot TC
    Biotechnol Prog; 2014; 30(4):932-44. PubMed ID: 24616404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano-emulgel: Emerging as a Smarter Topical Lipidic Emulsion-based Nanocarrier for Skin Healthcare Applications.
    Anand K; Ray S; Rahman M; Shaharyar A; Bhowmik R; Bera R; Karmakar S
    Recent Pat Antiinfect Drug Discov; 2019; 14(1):16-35. PubMed ID: 31333141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicontinuous cyclosporin a loaded water-AOT/Tween 85-isopropylmyristate microemulsion: structural characterization and dermal pharmacokinetics in vivo.
    Liu H; Wang Y; Lang Y; Yao H; Dong Y; Li S
    J Pharm Sci; 2009 Mar; 98(3):1167-76. PubMed ID: 18729203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo.
    Abu Samah NH; Heard CM
    Nanotoxicology; 2014 Feb; 8(1):100-6. PubMed ID: 23194376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The application of nanoemulsion in dermatology: an overview.
    Wu Y; Li YH; Gao XH; Chen HD
    J Drug Target; 2013 May; 21(4):321-7. PubMed ID: 23600746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of different emulsion systems for dermal delivery of nicotinamide.
    Tuncay S; Özer Ö
    Pharm Dev Technol; 2013; 18(6):1417-23. PubMed ID: 23742727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.