These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 18824525)

  • 1. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations.
    Sjögren E; Lennernäs H; Andersson TB; Gråsjö J; Bredberg U
    Drug Metab Dispos; 2009 Jan; 37(1):47-58. PubMed ID: 18824525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model.
    Houston JB; Kenworthy KE
    Drug Metab Dispos; 2000 Mar; 28(3):246-54. PubMed ID: 10681367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized experimental design for the estimation of enzyme kinetic parameters: an experimental evaluation.
    Sjögren E; Svanberg P; Kanebratt KP
    Drug Metab Dispos; 2012 Dec; 40(12):2273-9. PubMed ID: 22942316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate depletion approach for determining in vitro metabolic clearance: time dependencies in hepatocyte and microsomal incubations.
    Jones HM; Houston JB
    Drug Metab Dispos; 2004 Sep; 32(9):973-82. PubMed ID: 15319339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fresh and cryopreserved rat hepatocyte suspensions for the prediction of in vitro intrinsic clearance.
    Griffin SJ; Houston JB
    Drug Metab Dispos; 2004 May; 32(5):552-8. PubMed ID: 15100178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical analysis of the Michaelis-Menten equation.
    Raaijmakers JG
    Biometrics; 1987 Dec; 43(4):793-803. PubMed ID: 3427164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of microsomal concentration on apparent intrinsic clearance: implications for scaling in vitro data.
    Kalvass JC; Tess DA; Giragossian C; Linhares MC; Maurer TS
    Drug Metab Dispos; 2001 Oct; 29(10):1332-6. PubMed ID: 11560877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of human pharmacokinetics--evaluation of methods for prediction of hepatic metabolic clearance.
    Fagerholm U
    J Pharm Pharmacol; 2007 Jun; 59(6):803-28. PubMed ID: 17637173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The back-step method--method for obtaining unbiased population parameter estimates for ordered categorical data.
    Kjellsson MC; Jönsson S; Karlsson MO
    AAPS J; 2004 Aug; 6(3):e19. PubMed ID: 15760104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a minimal experimental design for determination of enzyme kinetic parameters and inhibition mechanism.
    Kakkar T; Pak Y; Mayersohn M
    J Pharmacol Exp Ther; 2000 Jun; 293(3):861-9. PubMed ID: 10869386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved rearrangement of the integrated Michaelis-Menten equation for calculating in vivo kinetics of transport and metabolism.
    Russell RW; Drane JW
    J Dairy Sci; 1992 Dec; 75(12):3455-64. PubMed ID: 1474212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries.
    Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E
    Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal experimental design for assessment of enzyme kinetics in a drug discovery screening environment.
    Sjögren E; Nyberg J; Magnusson MO; Lennernäs H; Hooker A; Bredberg U
    Drug Metab Dispos; 2011 May; 39(5):858-63. PubMed ID: 21289074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative performance of different stochastic methods to simulate drug exposure and variability in a population.
    Tam VH; Kabbara S
    Diagn Microbiol Infect Dis; 2006 Oct; 56(2):185-8. PubMed ID: 16930922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling weight variability in a pan coating process using Monte Carlo simulations.
    Pandey P; Katakdaunde M; Turton R
    AAPS PharmSciTech; 2006 Oct; 7(4):83. PubMed ID: 17233536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of recombinant cytochrome P450 enzymes as an in vitro system for metabolic clearance predictions.
    Stringer RA; Strain-Damerell C; Nicklin P; Houston JB
    Drug Metab Dispos; 2009 May; 37(5):1025-34. PubMed ID: 19196847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.
    Goudar CT; Harris SK; McInerney MJ; Suflita JM
    J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, data analysis, and simulation of in vitro drug transport kinetic experiments using a mechanistic in vitro model.
    Poirier A; Lavé T; Portmann R; Brun ME; Senner F; Kansy M; Grimm HP; Funk C
    Drug Metab Dispos; 2008 Dec; 36(12):2434-44. PubMed ID: 18809732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis and error structure of progress curves.
    Gutierrez OA; Danielson UH
    Anal Biochem; 2006 Nov; 358(1):1-10. PubMed ID: 16979133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human pharmacokinetics from preclinical information: comparative accuracy of quantitative prediction approaches.
    Hosea NA; Collard WT; Cole S; Maurer TS; Fang RX; Jones H; Kakar SM; Nakai Y; Smith BJ; Webster R; Beaumont K
    J Clin Pharmacol; 2009 May; 49(5):513-33. PubMed ID: 19299532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.