BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

891 related articles for article (PubMed ID: 18824646)

  • 1. Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility.
    Szokodi I; Kerkelä R; Kubin AM; Sármán B; Pikkarainen S; Kónyi A; Horváth IG; Papp L; Tóth M; Skoumal R; Ruskoaho H
    Circulation; 2008 Oct; 118(16):1651-8. PubMed ID: 18824646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of reactive oxygen species in the regulation of cardiac contractility.
    Kubin AM; Skoumal R; Tavi P; Kónyi A; Perjés A; Leskinen H; Ruskoaho H; Szokodi I
    J Mol Cell Cardiol; 2011 May; 50(5):884-93. PubMed ID: 21320508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury.
    Xu Z; Wang BR; Wang X; Kuang F; Duan XL; Jiao XY; Ju G
    Life Sci; 2006 Oct; 79(20):1895-905. PubMed ID: 16978658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress.
    Abdelmegeed MA; Kim SK; Woodcroft KJ; Novak RF
    J Pharmacol Exp Ther; 2004 Aug; 310(2):728-36. PubMed ID: 15051799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways.
    Liu W; Liang Q; Balzar S; Wenzel S; Gorska M; Alam R
    J Allergy Clin Immunol; 2008 Apr; 121(4):893-902.e2. PubMed ID: 18395552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C5a differentially stimulates the ERK1/2 and p38 MAPK phosphorylation through independent signaling pathways to induced chemotactic migration in RAW264.7 macrophages.
    Chiou WF; Tsai HR; Yang LM; Tsai WJ
    Int Immunopharmacol; 2004 Oct; 4(10-11):1329-41. PubMed ID: 15313431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatase-mediated crosstalk control of ERK and p38 MAPK signaling in corneal epithelial cells.
    Wang Z; Yang H; Tachado SD; Capó-Aponte JE; Bildin VN; Koziel H; Reinach PS
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5267-75. PubMed ID: 17122112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways.
    Heidbreder M; Naumann A; Tempel K; Dominiak P; Dendorfer A
    Cardiovasc Res; 2008 Apr; 78(1):108-15. PubMed ID: 18096574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate.
    Frias MA; James RW; Gerber-Wicht C; Lang U
    Cardiovasc Res; 2009 May; 82(2):313-23. PubMed ID: 19151362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinases activation by ischemic preconditioning.
    Takeishi Y; Huang Q; Wang T; Glassman M; Yoshizumi M; Baines CP; Lee JD; Kawakatsu H; Che W; Lerner-Marmarosh N; Zhang C; Yan C; Ohta S; Walsh RA; Berk BC; Abe J
    J Mol Cell Cardiol; 2001 Nov; 33(11):1989-2005. PubMed ID: 11708843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect interactions between calcineurin-NFAT and MEK1-extracellular signal-regulated kinase 1/2 signaling pathways regulate cardiac gene expression and cellular growth.
    Sanna B; Bueno OF; Dai YS; Wilkins BJ; Molkentin JD
    Mol Cell Biol; 2005 Feb; 25(3):865-78. PubMed ID: 15657416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniaxial stretch-induced regulation of mitogen-activated protein kinase, Akt and p70 S6 kinase in the ageing Fischer 344 x Brown Norway rat aorta.
    Rice KM; Desai DH; Preston DL; Wehner PS; Blough ER
    Exp Physiol; 2007 Sep; 92(5):963-70. PubMed ID: 17526558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of ERK1/2 and p38(MAPK) by components of the Rho signaling pathway during sphingosine-1-phosphate-induced smooth muscle cell migration.
    Galaria II; Fegley AJ; Nicholl SM; Roztocil E; Davies MG
    J Surg Res; 2004 Dec; 122(2):173-9. PubMed ID: 15555614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of p38 mitogen-activated protein kinase abolishes insulin-mediated myocardial protection against ischemia-reperfusion injury.
    Chai W; Wu Y; Li G; Cao W; Yang Z; Liu Z
    Am J Physiol Endocrinol Metab; 2008 Jan; 294(1):E183-9. PubMed ID: 18003719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway.
    Meng R; Pei Z; Zhang A; Zhou Y; Cai X; Chen B; Liu G; Mai W; Wei J; Dong Y
    Arch Biochem Biophys; 2011 Jul; 511(1-2):1-7. PubMed ID: 21530483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts.
    Kanno T; Takahashi T; Tsujisawa T; Ariyoshi W; Nishihara T
    J Cell Biochem; 2007 Aug; 101(5):1266-77. PubMed ID: 17265428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla.
    Chan SH; Wang LL; Tseng HL; Chan JY
    J Hypertens; 2007 Sep; 25(9):1845-61. PubMed ID: 17762649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Indian hedgehog mRNA levels in chondrocytic cells by ERK1/2 and p38 mitogen-activated protein kinases.
    Lai LP; DaSilva KA; Mitchell J
    J Cell Physiol; 2005 Apr; 203(1):177-85. PubMed ID: 15389630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure of C6 glioma cells to Pb(II) increases the phosphorylation of p38(MAPK) and JNK1/2 but not of ERK1/2.
    Posser T; de Aguiar CB; Garcez RC; Rossi FM; Oliveira CS; Trentin AG; Neto VM; Leal RB
    Arch Toxicol; 2007 Jun; 81(6):407-14. PubMed ID: 17333127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional down-regulation of thromboxane A(2) receptor expression via activation of MAPK ERK1/2, p38/NF-kappaB pathways.
    Zhang W; Zhang Y; Edvinsson L; Xu CB
    J Vasc Res; 2009; 46(2):162-74. PubMed ID: 18769070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.