These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 18824814)

  • 1. Removal of selected pharmaceuticals by chlorination, coagulation-sedimentation and powdered activated carbon treatment.
    Simazaki D; Fujiwara J; Manabe S; Matsuda M; Asami M; Kunikane S
    Water Sci Technol; 2008; 58(5):1129-35. PubMed ID: 18824814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology.
    Quintana JB; Rodil R; López-Mahía P; Muniategui-Lorenzo S; Prada-Rodríguez D
    Water Res; 2010 Jan; 44(1):243-55. PubMed ID: 19800649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rejection of pharmaceuticals by forward osmosis membranes.
    Jin X; Shan J; Wang C; Wei J; Tang CY
    J Hazard Mater; 2012 Aug; 227-228():55-61. PubMed ID: 22640821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada.
    Boyd GR; Reemtsma H; Grimm DA; Mitra S
    Sci Total Environ; 2003 Jul; 311(1-3):135-49. PubMed ID: 12826389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds.
    Tran NH; Urase T; Kusakabe O
    J Hazard Mater; 2009 Nov; 171(1-3):1051-7. PubMed ID: 19615816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of aqueous chlorination of some pharmaceuticals and their elimination from water matrices.
    Acero JL; Benitez FJ; Real FJ; Roldan G
    Water Res; 2010 Jul; 44(14):4158-70. PubMed ID: 20605184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen.
    Matamoros V; Hijosa M; Bayona JM
    Chemosphere; 2009 Apr; 75(2):200-5. PubMed ID: 19155040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments.
    Scheytt TJ; Mersmann P; Heberer T
    J Contam Hydrol; 2006 Feb; 83(1-2):53-69. PubMed ID: 16343689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.
    Landry KA; Sun P; Huang CH; Boyer TH
    Water Res; 2015 Jan; 68():510-21. PubMed ID: 25462757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.
    Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP
    Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of pharmaceuticals in waste water treatment plant in Japan.
    Matsuo H; Sakamoto H; Arizono K; Shinohara R
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):31-5. PubMed ID: 21562834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of pharmaceuticals from water: using liquid-core microcapsules as a novel approach.
    Whelehan M; von Stockar U; Marison IW
    Water Res; 2010 Apr; 44(7):2314-24. PubMed ID: 20163817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural organic matter removal by coagulation during drinking water treatment: a review.
    Matilainen A; Vepsäläinen M; Sillanpää M
    Adv Colloid Interface Sci; 2010 Sep; 159(2):189-97. PubMed ID: 20633865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of phenazone-type drugs during chlorination.
    Rodil R; Quintana JB; Cela R
    Water Res; 2012 May; 46(7):2457-68. PubMed ID: 22381982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.
    Kim SD; Cho J; Kim IS; Vanderford BJ; Snyder SA
    Water Res; 2007 Mar; 41(5):1013-21. PubMed ID: 16934312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biological activated carbon (BAC) and membrane bioreactor (MBR) for pollutants removal in drinking water treatment.
    Tian JY; Chen ZL; Liang H; Li X; Wang ZZ; Li GB
    Water Sci Technol; 2009; 60(6):1515-23. PubMed ID: 19759454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds.
    Stackelberg PE; Gibs J; Furlong ET; Meyer MT; Zaugg SD; Lippincott RL
    Sci Total Environ; 2007 May; 377(2-3):255-72. PubMed ID: 17363035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.
    Zupanc M; Kosjek T; Petkovšek M; Dular M; Kompare B; Širok B; Blažeka Ž; Heath E
    Ultrason Sonochem; 2013 Jul; 20(4):1104-12. PubMed ID: 23352585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks.
    Hasan Z; Jeon J; Jhung SH
    J Hazard Mater; 2012 Mar; 209-210():151-7. PubMed ID: 22277335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.