These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 18825219)
1. Retrieval of foreign-broadened water vapor continuum coefficients from emitted spectral radiance in the H2O rotational band from 240 to 590 cm(-1). Serio C; Masiello G; Esposito F; Di Girolamo P; Di Iorio T; Palchetti L; Bianchini G; Muscari G; Pavese G; Rizzi R; Carli B; Cuomo V Opt Express; 2008 Sep; 16(20):15816-33. PubMed ID: 18825219 [TBL] [Abstract][Full Text] [Related]
2. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 microm band at -30 degrees C. Rowe PM; Walden VP Appl Opt; 2009 Mar; 48(7):1358-65. PubMed ID: 19252637 [TBL] [Abstract][Full Text] [Related]
3. Airborne and satellite remote sensing of the mid-infrared water vapour continuum. Newman SM; Green PD; Ptashnik IV; Gardiner TD; Coleman MD; McPheat RA; Smith KM Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2611-36. PubMed ID: 22547235 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region. Green PD; Newman SM; Beeby RJ; Murray JE; Pickering JC; Harries JE Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2637-55. PubMed ID: 22547236 [TBL] [Abstract][Full Text] [Related]
5. Measurements of the foreign-broadened continuum of water vapor in the 6.3 microm band at -30 degrees C. Rowe PM; Walden VP; Warren SG Appl Opt; 2006 Jun; 45(18):4366-82. PubMed ID: 16778946 [TBL] [Abstract][Full Text] [Related]
6. Validation of H2O continuum absorption models in the wave number range 180-600 cm(-1) with atmospheric emitted spectral radiance measured at the Antarctica Dome-C site. Liuzzi G; Masiello G; Serio C; Palchetti L; Bianchini G Opt Express; 2014 Jul; 22(14):16784-801. PubMed ID: 25090497 [TBL] [Abstract][Full Text] [Related]
7. The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm(-1) atmospheric windows. Baranov YI; Lafferty WJ Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2578-89. PubMed ID: 22547233 [TBL] [Abstract][Full Text] [Related]
8. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements. Ptashnik IV; McPheat RA; Shine KP; Smith KM; Williams RG Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2557-77. PubMed ID: 22547232 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the FASCODE model and its H(2)O continuum based on long-path atmospheric transmission measurements in the 4.5-11.5-µm region. Thériault JM; Roney PL; -Germain DS; Revercomb HE; Knuteson RO; Smith WL Appl Opt; 1994 Jan; 33(3):323-33. PubMed ID: 20862021 [TBL] [Abstract][Full Text] [Related]
10. Infrared water vapor continuum absorption at atmospheric temperatures. Cormier JG; Hodges JT; Drummond JR J Chem Phys; 2005 Mar; 122(11):114309. PubMed ID: 15836217 [TBL] [Abstract][Full Text] [Related]
11. Calculation of rovibrational energy states for water vapor using the symmetric top approximation in the Pade form. Voitsekhovskaya OK; Cherepanov VN; Kotov AA Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1133-9. PubMed ID: 15084333 [TBL] [Abstract][Full Text] [Related]
12. Accurate measurements and temperature dependence of the water vapor self-continuum absorption in the 2.1 μm atmospheric window. Ventrillard I; Romanini D; Mondelain D; Campargue A J Chem Phys; 2015 Oct; 143(13):134304. PubMed ID: 26450311 [TBL] [Abstract][Full Text] [Related]
13. The self- and foreign-absorption continua of water vapor by cavity ring-down spectroscopy near 2.35 μm. Mondelain D; Vasilchenko S; Čermák P; Kassi S; Campargue A Phys Chem Chem Phys; 2015 Jul; 17(27):17762-70. PubMed ID: 26084382 [TBL] [Abstract][Full Text] [Related]
14. Development and recent evaluation of the MT_CKD model of continuum absorption. Mlawer EJ; Payne VH; Moncet JL; Delamere JS; Alvarado MJ; Tobin DC Philos Trans A Math Phys Eng Sci; 2012 Jun; 370(1968):2520-56. PubMed ID: 22547231 [TBL] [Abstract][Full Text] [Related]
15. Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data. OuYang X; Wang N; Wu H; Li ZL Opt Express; 2010 Jan; 18(2):544-50. PubMed ID: 20173873 [TBL] [Abstract][Full Text] [Related]
16. Laboratory calibration of pyrgeometers with known spectral responsivities. Gröbner J; Los A Appl Opt; 2007 Oct; 46(30):7419-25. PubMed ID: 17952176 [TBL] [Abstract][Full Text] [Related]
17. Interferometer for ground-based observations of emitted spectral radiance from the troposphere: evaluation and retrieval performance. Serio C; Esposito F; Masiello G; Pavese G; Calvello MR; Grieco G; Cuomo V; Buijs HL; Roy CB Appl Opt; 2008 Jul; 47(21):3909-19. PubMed ID: 18641761 [TBL] [Abstract][Full Text] [Related]
18. A new method to obtain Fourier transform infrared spectra free from water vapor disturbance. Chen Y; Wang HS; Umemura J Appl Spectrosc; 2010 Oct; 64(10):1186-9. PubMed ID: 20925991 [TBL] [Abstract][Full Text] [Related]
19. Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response. Gordon HR Appl Opt; 1995 Dec; 34(36):8363-74. PubMed ID: 21068957 [TBL] [Abstract][Full Text] [Related]
20. Determination of the Atmospheric-Water-Vapor Content in the 940-nm Absorption Band by Use of Moderate Spectral-Resolution Measurements of Direct Solar Irradiance. Cachorro VE; Utrillas P; Vergaz R; Durán P; de Frutos AM; Martinez-Lozano JA Appl Opt; 1998 Jul; 37(21):4678-89. PubMed ID: 18285925 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]