These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18825266)

  • 1. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses.
    Miyaji G; Miyazaki K
    Opt Express; 2008 Sep; 16(20):16265-71. PubMed ID: 18825266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance.
    Liu CH; Hong MH; Cheung HW; Zhang F; Huang ZQ; Tan LS; Hor TS
    Opt Express; 2008 Jul; 16(14):10701-9. PubMed ID: 18607486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon micro- and nano-optics.
    Krenn JR; Ditlbacher H; Schider G; Hohenau A; Leitner A; Aussenegg FR
    J Microsc; 2003 Mar; 209(Pt 3):167-72. PubMed ID: 12641756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of vertex truncation of polyhedral nanostructures on localized surface plasmon resonance.
    Ma WY; Yao J; Yang H; Liu JY; Li F; Hilton JP; Lin Q
    Opt Express; 2009 Aug; 17(17):14967-76. PubMed ID: 19687975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic nanostructures on titanium dioxide film produced using femtosecond laser with wavelengths of 388 nm and 775 nm.
    Shinonaga T; Tsukamoto M; Miyaji G
    Opt Express; 2014 Jun; 22(12):14696-704. PubMed ID: 24977565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures.
    Byun KM; Jang SM; Kim SJ; Kim D
    J Opt Soc Am A Opt Image Sci Vis; 2009 Apr; 26(4):1027-34. PubMed ID: 19340279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy.
    Mehfuz R; Chowdhury FA; Chau KJ
    Opt Express; 2012 May; 20(10):10526-37. PubMed ID: 22565678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructure Formation on Diamond-Like Carbon Films Induced with Few-Cycle Laser Pulses at Low Fluence from a Ti:Sapphire Laser Oscillator.
    Nikaido S; Natori T; Saito R; Miyaji G
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 30012968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast spatiotemporal relaxation dynamics of excited electrons in a metal nanostructure detected by femtosecond-SNOM.
    Li Z; Yue S; Chen J; Gong Q
    Opt Express; 2010 Jun; 18(13):14232-7. PubMed ID: 20588557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase and polarization control as a route to plasmonic nanodevices.
    Sukharev M; Seideman T
    Nano Lett; 2006 Apr; 6(4):715-9. PubMed ID: 16608270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Handedness-sensitive emission of surface plasmon polaritons by elliptical nanohole ensembles.
    Tsema BB; Tsema YB; Shcherbakov MR; Lin YH; Liu DR; Klimov VV; Fedyanin AA; Tsai DP
    Opt Express; 2012 May; 20(10):10538-44. PubMed ID: 22565679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensors.
    Byun KM; Yoon SJ; Kim D
    Appl Opt; 2008 Nov; 47(31):5886-92. PubMed ID: 19122730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides.
    Neutens P; Lagae L; Borghs G; Van Dorpe P
    Nano Lett; 2010 Apr; 10(4):1429-32. PubMed ID: 20334350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-suppressed vertically-standing nanometal structures.
    Yang JK; Hwang IK; Seo MK; Kim SH; Lee YH
    Opt Express; 2008 Feb; 16(3):1951-7. PubMed ID: 18542274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules.
    Chen WT; Chen CJ; Wu PC; Sun S; Zhou L; Guo GY; Hsiao CT; Yang KY; Zheludev NI; Tsai DP
    Opt Express; 2011 Jun; 19(13):12837-42. PubMed ID: 21716526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of femtosecond-laser-induced periodic nanostructure formation on crystalline silicon surface immersed in water.
    Miyaji G; Miyazaki K; Zhang K; Yoshifuji T; Fujita J
    Opt Express; 2012 Jul; 20(14):14848-56. PubMed ID: 22772179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon polariton detection discriminating the polarization reversal image dipole effects.
    Lee KG; Ahn KJ; Kihm HW; Ahn JS; Kim TK; Hong S; Kim ZH; Kim DS
    Opt Express; 2008 Jul; 16(14):10641-9. PubMed ID: 18607478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition.
    Hung WH; Hsu IK; Bushmaker A; Kumar R; Theiss J; Cronin SB
    Nano Lett; 2008 Oct; 8(10):3278-82. PubMed ID: 18771333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical bistability in metal gap waveguide nanocavities.
    Shen Y; Wang GP
    Opt Express; 2008 Jun; 16(12):8421-6. PubMed ID: 18545555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.