These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 18825305)

  • 1. Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role.
    Saelensminde G; Halskau Ø; Jonassen I
    Extremophiles; 2009 Jan; 13(1):11-20. PubMed ID: 18825305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: insights from the quasi-chemical approximation.
    Goldstein RA
    Protein Sci; 2007 Sep; 16(9):1887-95. PubMed ID: 17766385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins.
    Saelensminde G; Halskau Ø; Helland R; Willassen NP; Jonassen I
    Extremophiles; 2007 Jul; 11(4):585-96. PubMed ID: 17429573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2004 Feb; 126(7):2208-14. PubMed ID: 14971956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions.
    Alvarez-Ponce D; Ruiz-González MX; Vera-Sirera F; Feyertag F; Perez-Amador MA; Fares MA
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30081447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid coupling patterns in thermophilic proteins.
    Liang HK; Huang CM; Ko MT; Hwang JK
    Proteins; 2005 Apr; 59(1):58-63. PubMed ID: 15688447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A comparison of amino acid composition of proteins from thermophiles and mesophiles].
    Lu B; Wang G; Huang P
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):20-5. PubMed ID: 12549384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles.
    Greaves RB; Warwicker J
    BMC Struct Biol; 2007 Mar; 7():18. PubMed ID: 17394655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins.
    Elcock AH
    J Mol Biol; 1998 Nov; 284(2):489-502. PubMed ID: 9813132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles.
    Brininger C; Spradlin S; Cobani L; Evilia C
    Semin Cell Dev Biol; 2018 Dec; 84():158-169. PubMed ID: 29288800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.
    De Vendittis E; Castellano I; Cotugno R; Ruocco MR; Raimo G; Masullo M
    J Theor Biol; 2008 Jan; 250(1):156-71. PubMed ID: 17950361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of weak interactions in thermal stability of proteins.
    Ibrahim BS; Pattabhi V
    Biochem Biophys Res Commun; 2004 Dec; 325(3):1082-9. PubMed ID: 15541399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The stability of thermophilic proteins: a study based on comprehensive genome comparison.
    Das R; Gerstein M
    Funct Integr Genomics; 2000 May; 1(1):76-88. PubMed ID: 11793224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Close-range electrostatic interactions in proteins.
    Kumar S; Nussinov R
    Chembiochem; 2002 Jul; 3(7):604-17. PubMed ID: 12324994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus.
    Tartaglia LJ; Shain DH
    Gene; 2008 Nov; 423(2):135-41. PubMed ID: 18718858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical characterization of salt bridges in proteins.
    Sarakatsannis JN; Duan Y
    Proteins; 2005 Sep; 60(4):732-9. PubMed ID: 16021620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
    Arnórsdóttir J; Kristjánsson MM; Ficner R
    FEBS J; 2005 Feb; 272(3):832-45. PubMed ID: 15670163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid alphabet reduction preserves fold information contained in contact interactions in proteins.
    Solis AD
    Proteins; 2015 Dec; 83(12):2198-216. PubMed ID: 26407535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics.
    Sigtryggsdóttir AR; Papaleo E; Thorbjarnardóttir SH; Kristjánsson MM
    Biochim Biophys Acta; 2014 Apr; 1844(4):705-12. PubMed ID: 24561657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of main chain and side chain atoms and their locations to the stability of thermophilic proteins.
    Tompa DR; Gromiha MM; Saraboji K
    J Mol Graph Model; 2016 Mar; 64():85-93. PubMed ID: 26811870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.