BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 18825416)

  • 1. Non-native earthworms in riparian soils increase nitrogen flux into adjacent aquatic ecosystems.
    Costello DM; Lamberti GA
    Oecologia; 2008 Dec; 158(3):499-510. PubMed ID: 18825416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties.
    Ferlian O; Thakur MP; Castañeda González A; San Emeterio LM; Marr S; da Silva Rocha B; Eisenhauer N
    Ecology; 2020 Mar; 101(3):e02936. PubMed ID: 31749167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils.
    Matthies C; Griesshammer A; Schmittroth M; Drake HL
    Appl Environ Microbiol; 1999 Aug; 65(8):3599-604. PubMed ID: 10427055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization.
    Tiunov AV; Scheu S
    Oecologia; 2004 Jan; 138(1):83-90. PubMed ID: 14530960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europeaus (Poaceae): faunal interactions, response of microorganisms and effects on plant growth.
    Alphei J; Bonkowski M; Scheu S
    Oecologia; 1996 Apr; 106(1):111-126. PubMed ID: 28307163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis.
    Briones MJI; Schmidt O
    Glob Chang Biol; 2017 Oct; 23(10):4396-4419. PubMed ID: 28464547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of short and long-term effects of imidacloprid on the burrowing behaviour of two earthworm species (Aporrectodea caliginosa and Lumbricus terrestris) by using 2D and 3D post-exposure techniques.
    Dittbrenner N; Moser I; Triebskorn R; Capowiez Y
    Chemosphere; 2011 Sep; 84(10):1349-55. PubMed ID: 21632088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and behavioural effects of imidacloprid on two ecologically relevant earthworm species (Lumbricus terrestris and Aporrectodea caliginosa).
    Dittbrenner N; Triebskorn R; Moser I; Capowiez Y
    Ecotoxicology; 2010 Nov; 19(8):1567-73. PubMed ID: 20821048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Environmental activity of earthworms (Lumbricus terrestris L.) and the spatial organization of soil communities].
    Tiunov AV; Kuznetsova NA
    Izv Akad Nauk Ser Biol; 2000; (5):607-16. PubMed ID: 11042967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams.
    Mulholland PJ; Steinman AD; Marzolf ER; Hart DR; DeAngelis DL
    Oecologia; 1994 Jun; 98(1):40-47. PubMed ID: 28312794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stoichiometric control on riparian wetland carbon and nutrient dynamics under different land uses.
    Yao L; Rashti MR; Brough DM; Burford MA; Liu W; Liu G; Chen C
    Sci Total Environ; 2019 Dec; 697():134127. PubMed ID: 31491632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exotic earthworm effects on hardwood forest floor, nutrient availability and native plants: a mesocosm study.
    Hale CM; Frelich LE; Reich PB; Pastor J
    Oecologia; 2008 Mar; 155(3):509-18. PubMed ID: 18066602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Earthworms and litter management contributions to ecosystem services in a tropical agroforestry system.
    Fonte SJ; Six J
    Ecol Appl; 2010 Jun; 20(4):1061-73. PubMed ID: 20597290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations.
    Gaupp-Berghausen M; Hofer M; Rewald B; Zaller JG
    Sci Rep; 2015 Aug; 5():12886. PubMed ID: 26243044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in nitrate and phosphorus export between wooded and grassed riparian zones from farmland to receiving waterways under varying rainfall conditions.
    Neilen AD; Chen CR; Parker BM; Faggotter SJ; Burford MA
    Sci Total Environ; 2017 Nov; 598():188-197. PubMed ID: 28441597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of nitrogen pools and processes in degraded riparian zones in the southern appalachians.
    Walker JT; Vose JM; Knoepp J; Geron CD
    J Environ Qual; 2009; 38(4):1391-9. PubMed ID: 19465714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do alterations in mesofauna community affect earthworms?
    Uvarov AV; Karaban K
    Oecologia; 2015 Nov; 179(3):877-87. PubMed ID: 26188519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urban runoff and stream channel incision interact to influence riparian soils and understory vegetation.
    Solins JP; Cadenasso ML
    Ecol Appl; 2022 Jun; 32(4):e2556. PubMed ID: 35112753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water pulses and biogeochemical cycles in arid and semiarid ecosystems.
    Austin AT; Yahdjian L; Stark JM; Belnap J; Porporato A; Norton U; Ravetta DA; Schaeffer SM
    Oecologia; 2004 Oct; 141(2):221-35. PubMed ID: 14986096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.