These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 18825642)
1. Design, fabrication, and characterization of a composite scaffold for bone tissue engineering. Boschetti F; Tomei AA; Turri S; Swartz MA; Levi M Int J Artif Organs; 2008 Aug; 31(8):697-707. PubMed ID: 18825642 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Wang DX; He Y; Bi L; Qu ZH; Zou JW; Pan Z; Fan JJ; Chen L; Dong X; Liu XN; Pei GX; Ding JD Int J Nanomedicine; 2013; 8():1855-65. PubMed ID: 23690683 [TBL] [Abstract][Full Text] [Related]
3. Novel tubular composite matrix for bone repair. Kofron MD; Cooper JA; Kumbar SG; Laurencin CT J Biomed Mater Res A; 2007 Aug; 82(2):415-25. PubMed ID: 17295242 [TBL] [Abstract][Full Text] [Related]
4. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates. Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730 [TBL] [Abstract][Full Text] [Related]
5. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen. Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329 [TBL] [Abstract][Full Text] [Related]
6. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
7. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration. Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817 [TBL] [Abstract][Full Text] [Related]
8. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455 [TBL] [Abstract][Full Text] [Related]
9. Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. Simpson RL; Wiria FE; Amis AA; Chua CK; Leong KF; Hansen UN; Chandrasekaran M; Lee MW J Biomed Mater Res B Appl Biomater; 2008 Jan; 84(1):17-25. PubMed ID: 17465027 [TBL] [Abstract][Full Text] [Related]
10. Poly(lactic-co-glycolic acid)(PLGA)/TiO Eslami H; Azimi Lisar H; Jafarzadeh Kashi TS; Tahriri M; Ansari M; Rafiei T; Bastami F; Shahin-Shamsabadi A; Mashhadi Abbas F; Tayebi L Biologicals; 2018 May; 53():51-62. PubMed ID: 29503205 [TBL] [Abstract][Full Text] [Related]
11. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds. Haider A; Gupta KC; Kang IK Biomed Res Int; 2014; 2014():308306. PubMed ID: 24719853 [TBL] [Abstract][Full Text] [Related]
12. Rapid-prototyped PLGA/β-TCP/hydroxyapatite nanocomposite scaffolds in a rabbit femoral defect model. Kim J; McBride S; Tellis B; Alvarez-Urena P; Song YH; Dean DD; Sylvia VL; Elgendy H; Ong J; Hollinger JO Biofabrication; 2012 Jun; 4(2):025003. PubMed ID: 22427485 [TBL] [Abstract][Full Text] [Related]
13. Tissue-engineered composite scaffold of poly(lactide-co-glycolide) and hydroxyapatite nanoparticles seeded with autologous mesenchymal stem cells for bone regeneration. Zhang B; Zhang PB; Wang ZL; Lyu ZW; Wu H J Zhejiang Univ Sci B; 2017 Nov.; 18(11):963-976. PubMed ID: 29119734 [TBL] [Abstract][Full Text] [Related]
14. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403 [TBL] [Abstract][Full Text] [Related]
15. Basic research on aw-AC/PLGA composite scaffolds for bone tissue engineering. Minamiguchi S; Takechi M; Yuasa T; Momota Y; Tatehara S; Takano H; Miyamoto Y; Satomura K; Nagayama M J Mater Sci Mater Med; 2008 Mar; 19(3):1165-72. PubMed ID: 17701319 [TBL] [Abstract][Full Text] [Related]
16. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
17. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
18. Bone regeneration from human mesenchymal stem cells on porous hydroxyapatite-PLGA-collagen bioactive polymer scaffolds. Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM Biomed Mater Eng; 2017; 28(6):671-685. PubMed ID: 29171970 [TBL] [Abstract][Full Text] [Related]
19. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(D,L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering. Nga NK; Hoai TT; Viet PH Colloids Surf B Biointerfaces; 2015 Apr; 128():506-514. PubMed ID: 25791418 [TBL] [Abstract][Full Text] [Related]
20. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]